3D Imaging of particle motion during penetrometer testing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-08-15

AUTHORS

Masahiro Toiya, Jacco Hettinga, Wolfgang Losert

ABSTRACT

We present the results of direct observation of material rearrangement due to penetration of a solid rod (penetrometer) through a granular medium. Two different techniques and their advantages are discussed in this paper. We investigate the motion of material within the bulk around the rod. Transparent, polydisperse, and irregularly shaped silica particles immersed in index matching fluid are used for detailed imaging of the interior of a granular pile. Motion of material is observed by confocal microscopy from the bottom boundary up to 100 particle diameters in height. Image analysis indicates that rearrangements spread furthest not directly under the penetrometer but in a ring around the penetrometer. In addition, the direction of preformed stress chains in the material influences the particle rearrangements. Material compressed from one side exhibits anisotropic particle rearrangements under penetrometer testing. Laser sheet scanning allows for direct imaging of individual particle motion with greater accuracy, but works best for spherical particles only. More... »

PAGES

323-329

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10035-007-0044-4

DOI

http://dx.doi.org/10.1007/s10035-007-0044-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012229164


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, IREAP, IPST, University of Maryland in College Park, College Park, USA", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Department of Physics, IREAP, IPST, University of Maryland in College Park, College Park, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toiya", 
        "givenName": "Masahiro", 
        "id": "sg:person.0637041627.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637041627.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Twente, Enschede, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6214.1", 
          "name": [
            "Department of Physics, IREAP, IPST, University of Maryland in College Park, College Park, USA", 
            "University of Twente, Enschede, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hettinga", 
        "givenName": "Jacco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, IREAP, IPST, University of Maryland in College Park, College Park, USA", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Department of Physics, IREAP, IPST, University of Maryland in College Park, College Park, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Losert", 
        "givenName": "Wolfgang", 
        "id": "sg:person.01356716150.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356716150.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epje/i2003-10153-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031981985", 
          "https://doi.org/10.1140/epje/i2003-10153-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/427503a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048624732", 
          "https://doi.org/10.1038/427503a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022065851", 
          "https://doi.org/10.1038/nature03805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-349-16208-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704311", 
          "https://doi.org/10.1007/978-1-349-16208-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-08-15", 
    "datePublishedReg": "2007-08-15", 
    "description": "We present the results of direct observation of material rearrangement due to penetration of a solid rod (penetrometer) through a granular medium. Two different techniques and their advantages are discussed in this paper. We investigate the motion of material within the bulk around the rod. Transparent, polydisperse, and irregularly shaped silica particles immersed in index matching fluid are used for detailed imaging of the interior of a granular pile. Motion of material is observed by confocal microscopy from the bottom boundary up to 100 particle diameters in height. Image analysis indicates that rearrangements spread furthest not directly under the penetrometer but in a ring around the penetrometer. In addition, the direction of preformed stress chains in the material influences the particle rearrangements. Material compressed from one side exhibits anisotropic particle rearrangements under penetrometer testing. Laser sheet scanning allows for direct imaging of individual particle motion with greater accuracy, but works best for spherical particles only.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10035-007-0044-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052633", 
        "issn": [
          "1434-5021", 
          "1434-7636"
        ], 
        "name": "Granular Matter", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "motion of material", 
      "particle rearrangement", 
      "particle motion", 
      "penetrometer testing", 
      "individual particle motion", 
      "bottom boundary", 
      "granular media", 
      "stress chains", 
      "granular piles", 
      "spherical particles", 
      "particle diameter", 
      "silica particles", 
      "solid rod", 
      "material rearrangement", 
      "materials", 
      "penetrometer", 
      "particles", 
      "motion", 
      "rods", 
      "piles", 
      "image analysis", 
      "greater accuracy", 
      "different techniques", 
      "direct imaging", 
      "penetration", 
      "bulk", 
      "polydisperse", 
      "boundaries", 
      "fluid", 
      "microscopy", 
      "height", 
      "testing", 
      "diameter", 
      "accuracy", 
      "direction", 
      "direct observation", 
      "detailed imaging", 
      "advantages", 
      "technique", 
      "interior", 
      "side", 
      "scanning", 
      "results", 
      "medium", 
      "addition", 
      "imaging", 
      "observations", 
      "analysis", 
      "confocal microscopy", 
      "index", 
      "ring", 
      "chain", 
      "rearrangement", 
      "paper", 
      "anisotropic particle rearrangements", 
      "Laser sheet scanning", 
      "sheet scanning"
    ], 
    "name": "3D Imaging of particle motion during penetrometer testing", 
    "pagination": "323-329", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012229164"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10035-007-0044-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10035-007-0044-4", 
      "https://app.dimensions.ai/details/publication/pub.1012229164"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_441.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10035-007-0044-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10035-007-0044-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10035-007-0044-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10035-007-0044-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10035-007-0044-4'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      22 PREDICATES      86 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10035-007-0044-4 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author Naa74e3f5a4c94642909b7f8ee10845ed
4 schema:citation sg:pub.10.1007/978-1-349-16208-6
5 sg:pub.10.1038/427503a
6 sg:pub.10.1038/nature03805
7 sg:pub.10.1140/epje/i2003-10153-0
8 schema:datePublished 2007-08-15
9 schema:datePublishedReg 2007-08-15
10 schema:description We present the results of direct observation of material rearrangement due to penetration of a solid rod (penetrometer) through a granular medium. Two different techniques and their advantages are discussed in this paper. We investigate the motion of material within the bulk around the rod. Transparent, polydisperse, and irregularly shaped silica particles immersed in index matching fluid are used for detailed imaging of the interior of a granular pile. Motion of material is observed by confocal microscopy from the bottom boundary up to 100 particle diameters in height. Image analysis indicates that rearrangements spread furthest not directly under the penetrometer but in a ring around the penetrometer. In addition, the direction of preformed stress chains in the material influences the particle rearrangements. Material compressed from one side exhibits anisotropic particle rearrangements under penetrometer testing. Laser sheet scanning allows for direct imaging of individual particle motion with greater accuracy, but works best for spherical particles only.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N1c52748ee4b040d0998e5e56c042ea48
15 N88a17b00722743fa84e22966d2282bd8
16 sg:journal.1052633
17 schema:keywords Laser sheet scanning
18 accuracy
19 addition
20 advantages
21 analysis
22 anisotropic particle rearrangements
23 bottom boundary
24 boundaries
25 bulk
26 chain
27 confocal microscopy
28 detailed imaging
29 diameter
30 different techniques
31 direct imaging
32 direct observation
33 direction
34 fluid
35 granular media
36 granular piles
37 greater accuracy
38 height
39 image analysis
40 imaging
41 index
42 individual particle motion
43 interior
44 material rearrangement
45 materials
46 medium
47 microscopy
48 motion
49 motion of material
50 observations
51 paper
52 particle diameter
53 particle motion
54 particle rearrangement
55 particles
56 penetration
57 penetrometer
58 penetrometer testing
59 piles
60 polydisperse
61 rearrangement
62 results
63 ring
64 rods
65 scanning
66 sheet scanning
67 side
68 silica particles
69 solid rod
70 spherical particles
71 stress chains
72 technique
73 testing
74 schema:name 3D Imaging of particle motion during penetrometer testing
75 schema:pagination 323-329
76 schema:productId N26231f5177144c80af5ce2e9eb25daa8
77 N6d8f8eb42ed242928c22f9effebd7b6a
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012229164
79 https://doi.org/10.1007/s10035-007-0044-4
80 schema:sdDatePublished 2021-11-01T18:10
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N997157188ef14d86a0cbfea7da9ce1ce
83 schema:url https://doi.org/10.1007/s10035-007-0044-4
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N1c52748ee4b040d0998e5e56c042ea48 schema:volumeNumber 9
88 rdf:type schema:PublicationVolume
89 N26231f5177144c80af5ce2e9eb25daa8 schema:name dimensions_id
90 schema:value pub.1012229164
91 rdf:type schema:PropertyValue
92 N340bec5b106f4728a51fab45813c769c schema:affiliation grid-institutes:grid.6214.1
93 schema:familyName Hettinga
94 schema:givenName Jacco
95 rdf:type schema:Person
96 N4768a80c84174fc5839458e8b8d66971 rdf:first sg:person.01356716150.51
97 rdf:rest rdf:nil
98 N6d8f8eb42ed242928c22f9effebd7b6a schema:name doi
99 schema:value 10.1007/s10035-007-0044-4
100 rdf:type schema:PropertyValue
101 N88a17b00722743fa84e22966d2282bd8 schema:issueNumber 5
102 rdf:type schema:PublicationIssue
103 N997157188ef14d86a0cbfea7da9ce1ce schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Naa74e3f5a4c94642909b7f8ee10845ed rdf:first sg:person.0637041627.47
106 rdf:rest Ne047413cddab403fb8b72c60b40f9c68
107 Ne047413cddab403fb8b72c60b40f9c68 rdf:first N340bec5b106f4728a51fab45813c769c
108 rdf:rest N4768a80c84174fc5839458e8b8d66971
109 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
110 schema:name Engineering
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
113 schema:name Resources Engineering and Extractive Metallurgy
114 rdf:type schema:DefinedTerm
115 sg:journal.1052633 schema:issn 1434-5021
116 1434-7636
117 schema:name Granular Matter
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.01356716150.51 schema:affiliation grid-institutes:grid.164295.d
121 schema:familyName Losert
122 schema:givenName Wolfgang
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356716150.51
124 rdf:type schema:Person
125 sg:person.0637041627.47 schema:affiliation grid-institutes:grid.164295.d
126 schema:familyName Toiya
127 schema:givenName Masahiro
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637041627.47
129 rdf:type schema:Person
130 sg:pub.10.1007/978-1-349-16208-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109704311
131 https://doi.org/10.1007/978-1-349-16208-6
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/427503a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048624732
134 https://doi.org/10.1038/427503a
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature03805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022065851
137 https://doi.org/10.1038/nature03805
138 rdf:type schema:CreativeWork
139 sg:pub.10.1140/epje/i2003-10153-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031981985
140 https://doi.org/10.1140/epje/i2003-10153-0
141 rdf:type schema:CreativeWork
142 grid-institutes:grid.164295.d schema:alternateName Department of Physics, IREAP, IPST, University of Maryland in College Park, College Park, USA
143 schema:name Department of Physics, IREAP, IPST, University of Maryland in College Park, College Park, USA
144 rdf:type schema:Organization
145 grid-institutes:grid.6214.1 schema:alternateName University of Twente, Enschede, The Netherlands
146 schema:name Department of Physics, IREAP, IPST, University of Maryland in College Park, College Park, USA
147 University of Twente, Enschede, The Netherlands
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...