Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-11

AUTHORS

Kai Cheng, Zhi-Chao Niu, Robin C. Wang, Richard Rakowski, Richard Bateman

ABSTRACT

Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining. More... »

PAGES

1162-1176

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10033-017-0183-4

DOI

http://dx.doi.org/10.1007/s10033-017-0183-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091200949


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Manufacturing Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Engineering, Design and Physical Sciences, Brunel University London, UB8 3PH, Uxbridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "College of Engineering, Design and Physical Sciences, Brunel University London, UB8 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Kai", 
        "id": "sg:person.011372023063.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011372023063.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Engineering, Design and Physical Sciences, Brunel University London, UB8 3PH, Uxbridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "College of Engineering, Design and Physical Sciences, Brunel University London, UB8 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niu", 
        "givenName": "Zhi-Chao", 
        "id": "sg:person.015077410724.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015077410724.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Engineering, Design and Physical Sciences, Brunel University London, UB8 3PH, Uxbridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "College of Engineering, Design and Physical Sciences, Brunel University London, UB8 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Robin C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Engineering, Design and Physical Sciences, Brunel University London, UB8 3PH, Uxbridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "College of Engineering, Design and Physical Sciences, Brunel University London, UB8 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rakowski", 
        "givenName": "Richard", 
        "id": "sg:person.011755431315.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755431315.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Engineering, Design and Physical Sciences, Brunel University London, UB8 3PH, Uxbridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "College of Engineering, Design and Physical Sciences, Brunel University London, UB8 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bateman", 
        "givenName": "Richard", 
        "id": "sg:person.014554131777.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014554131777.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-84628-368-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011661321", 
          "https://doi.org/10.1007/978-1-84628-368-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-11", 
    "datePublishedReg": "2017-08-11", 
    "description": "Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10033-017-0183-4", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297527", 
        "issn": [
          "1000-9345", 
          "2192-8258"
        ], 
        "name": "Chinese Journal of Mechanical Engineering", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "smart cutting tool", 
      "fast tool servo", 
      "cutting tools", 
      "smart machining", 
      "high-speed micro milling", 
      "acoustic wave transducers", 
      "smart control algorithm", 
      "industrial application requirements", 
      "innovative design concepts", 
      "real-time machining", 
      "micro milling", 
      "piezoelectric film", 
      "tool servo", 
      "machining trials", 
      "micro drilling", 
      "wave transducers", 
      "machining", 
      "application perspective", 
      "process calibration", 
      "control algorithm", 
      "manufacturing purposes", 
      "temperature control", 
      "design concept", 
      "infra-red devices", 
      "Industry 4.0 concept", 
      "application requirements", 
      "medical applications", 
      "application exemplars", 
      "ultraprecision", 
      "milling", 
      "servo", 
      "tremendous potential", 
      "design principles", 
      "Si", 
      "films", 
      "drilling", 
      "collet", 
      "devices", 
      "implementation techniques", 
      "plug", 
      "transducer", 
      "force", 
      "calibration", 
      "design", 
      "technology", 
      "Fe", 
      "applications", 
      "implementation", 
      "tool", 
      "requirements", 
      "technique", 
      "process", 
      "precision", 
      "algorithm", 
      "concept", 
      "principles", 
      "control", 
      "potential", 
      "approach", 
      "development approach", 
      "analysis", 
      "types", 
      "advances", 
      "development", 
      "purpose", 
      "lines", 
      "number", 
      "perspective", 
      "exemplars", 
      "trials", 
      "paper"
    ], 
    "name": "Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives", 
    "pagination": "1162-1176", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091200949"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10033-017-0183-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10033-017-0183-4", 
      "https://app.dimensions.ai/details/publication/pub.1091200949"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_732.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10033-017-0183-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10033-017-0183-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10033-017-0183-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10033-017-0183-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10033-017-0183-4'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      99 URIs      87 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10033-017-0183-4 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 anzsrc-for:0910
4 anzsrc-for:0912
5 anzsrc-for:0913
6 schema:author N1ece60fd63bc4ed381810b132be1df3b
7 schema:citation sg:pub.10.1007/978-1-84628-368-0
8 schema:datePublished 2017-08-11
9 schema:datePublishedReg 2017-08-11
10 schema:description Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N35f2ada98f604f4ca8cd54f19ffd701d
14 N7b9f5afe41af40e5b6cc6507b0607925
15 sg:journal.1297527
16 schema:keywords Fe
17 Industry 4.0 concept
18 Si
19 acoustic wave transducers
20 advances
21 algorithm
22 analysis
23 application exemplars
24 application perspective
25 application requirements
26 applications
27 approach
28 calibration
29 collet
30 concept
31 control
32 control algorithm
33 cutting tools
34 design
35 design concept
36 design principles
37 development
38 development approach
39 devices
40 drilling
41 exemplars
42 fast tool servo
43 films
44 force
45 high-speed micro milling
46 implementation
47 implementation techniques
48 industrial application requirements
49 infra-red devices
50 innovative design concepts
51 lines
52 machining
53 machining trials
54 manufacturing purposes
55 medical applications
56 micro drilling
57 micro milling
58 milling
59 number
60 paper
61 perspective
62 piezoelectric film
63 plug
64 potential
65 precision
66 principles
67 process
68 process calibration
69 purpose
70 real-time machining
71 requirements
72 servo
73 smart control algorithm
74 smart cutting tool
75 smart machining
76 technique
77 technology
78 temperature control
79 tool
80 tool servo
81 transducer
82 tremendous potential
83 trials
84 types
85 ultraprecision
86 wave transducers
87 schema:name Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives
88 schema:pagination 1162-1176
89 schema:productId N73fba9844d76405e82dcaec434f8e3cc
90 N9f46320c5d2240b19779e91f4c3d1496
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091200949
92 https://doi.org/10.1007/s10033-017-0183-4
93 schema:sdDatePublished 2022-09-02T16:00
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N11223a4ec50045a59f7f4bcf6d2d33f8
96 schema:url https://doi.org/10.1007/s10033-017-0183-4
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N11223a4ec50045a59f7f4bcf6d2d33f8 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N1ece60fd63bc4ed381810b132be1df3b rdf:first sg:person.011372023063.33
103 rdf:rest N864e2ace1e1b43d2be62245fb43c39d8
104 N2131500c8ca248a0b20cc09f482231f5 rdf:first sg:person.011755431315.28
105 rdf:rest N9bc69276ac524d5fbddc3e684a2a4bce
106 N35f2ada98f604f4ca8cd54f19ffd701d schema:issueNumber 5
107 rdf:type schema:PublicationIssue
108 N73fba9844d76405e82dcaec434f8e3cc schema:name doi
109 schema:value 10.1007/s10033-017-0183-4
110 rdf:type schema:PropertyValue
111 N7b9f5afe41af40e5b6cc6507b0607925 schema:volumeNumber 30
112 rdf:type schema:PublicationVolume
113 N864e2ace1e1b43d2be62245fb43c39d8 rdf:first sg:person.015077410724.42
114 rdf:rest Nc3f8cf0940a541469f5852cda8083b5b
115 N9bc69276ac524d5fbddc3e684a2a4bce rdf:first sg:person.014554131777.56
116 rdf:rest rdf:nil
117 N9f46320c5d2240b19779e91f4c3d1496 schema:name dimensions_id
118 schema:value pub.1091200949
119 rdf:type schema:PropertyValue
120 Nc3f8cf0940a541469f5852cda8083b5b rdf:first Nf212576414794d29aa0f8f00dddcc29d
121 rdf:rest N2131500c8ca248a0b20cc09f482231f5
122 Nf212576414794d29aa0f8f00dddcc29d schema:affiliation grid-institutes:grid.7728.a
123 schema:familyName Wang
124 schema:givenName Robin C.
125 rdf:type schema:Person
126 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
127 schema:name Engineering
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
130 schema:name Electrical and Electronic Engineering
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
133 schema:name Manufacturing Engineering
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
136 schema:name Materials Engineering
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
139 schema:name Mechanical Engineering
140 rdf:type schema:DefinedTerm
141 sg:journal.1297527 schema:issn 1000-9345
142 2192-8258
143 schema:name Chinese Journal of Mechanical Engineering
144 schema:publisher Springer Nature
145 rdf:type schema:Periodical
146 sg:person.011372023063.33 schema:affiliation grid-institutes:grid.7728.a
147 schema:familyName Cheng
148 schema:givenName Kai
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011372023063.33
150 rdf:type schema:Person
151 sg:person.011755431315.28 schema:affiliation grid-institutes:grid.7728.a
152 schema:familyName Rakowski
153 schema:givenName Richard
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755431315.28
155 rdf:type schema:Person
156 sg:person.014554131777.56 schema:affiliation grid-institutes:grid.7728.a
157 schema:familyName Bateman
158 schema:givenName Richard
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014554131777.56
160 rdf:type schema:Person
161 sg:person.015077410724.42 schema:affiliation grid-institutes:grid.7728.a
162 schema:familyName Niu
163 schema:givenName Zhi-Chao
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015077410724.42
165 rdf:type schema:Person
166 sg:pub.10.1007/978-1-84628-368-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011661321
167 https://doi.org/10.1007/978-1-84628-368-0
168 rdf:type schema:CreativeWork
169 grid-institutes:grid.7728.a schema:alternateName College of Engineering, Design and Physical Sciences, Brunel University London, UB8 3PH, Uxbridge, UK
170 schema:name College of Engineering, Design and Physical Sciences, Brunel University London, UB8 3PH, Uxbridge, UK
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...