Contrasting Patterns of Soil Chemistry and Vegetation Cover Determine Diversity Changes of Soil Phototrophs Along an Afrotropical Elevation Gradient View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-18

AUTHORS

Klára Řeháková, Kateřina Čapková, Jan Altman, Martin Dančák, Ľuboš Majeský, Jiří Doležal

ABSTRACT

Soil phototrophic microbes play key roles in many ecosystem functions, including nutrient cycling, water absorption and retention, substrate weathering and soil stabilization, as well as colonization and persistence of other organisms. Knowledge about the diversity and biomass of soil phototrophs remains limited, especially in tropical forests and savannas. Here, we investigate changes in the diversity and abundance of soil phototrophs across the 4-km elevation gradient on Mt. Cameroon, Africa, from tropical forests (0–2300 m) to treeless savanna (2300–3600 m) and afroalpine vegetation (3600–4000 m). We evaluated the role of soil chemistry and vegetation cover in shaping phototrophic diversity patterns using soil, tree and herb census data from 224 permanent plots. Cyanobacteria from Chroococcales accounted for 65% of the species richness and > 70% of the biovolume. The highest phototrophic diversity and biovolume were recorded in treeless savanna and afroalpine vegetation, and lowest values in mid-elevation tropical forests with dense understory vegetation and hence limited light availability. Higher diversity and biovolume of soil phototrophs were associated with less productive, well-illuminated soils with lower organic matter and nitrogen content and higher pH, phosphorus and cation content. Changes in microbial richness and biovolume across tropical forests showed a U-shaped elevation pattern, with higher values recorded in coastal and lowland forests up to 1000 m elevation, the lowest values in the mid-elevation open-canopy forests with dense understory vegetation caused by disturbances of forest elephants and higher values again in montane forests between 1800 and 2200 m. Above the tree line, soil phototrophic biovolume also showed a U-shaped elevation pattern, with lower richness recorded in compact grasslands between 2700 and 3400 m. At lower-elevation savanna, soil phototrophs are indirectly supported by regular fires during the dry season, which reduces plant cover and increases soil phosphorus and cations, while barren lava fields at higher elevations around the summit support soil phototrophs directly via increased soil P and K content and indirectly by inhibiting plant growth and vegetation cover. Our results shed light on an overlooked part of soil biodiversity in major tropical ecosystems and uncover the role of various ecological filters in structuring phototrophic microbial communities in tropical soils. More... »

PAGES

1020-1036

References to SciGraph publications

  • 1989-04. Algae of terrestrial habitats in THE BOTANICAL REVIEW
  • 2009-12-12. Survival and colonisation potential of photoautotrophic microorganisms within a glacierised catchment on Svalbard, High Arctic in POLAR BIOLOGY
  • 2005-10. Microbial Assemblages in Soil Microbial Succession After Glacial Retreat in Svalbard (High Arctic) in MICROBIAL ECOLOGY
  • 2011-06-04. Soil Cyanobacterial and Microalgal Diversity in Dry Mountains of Ladakh, NW Himalaya, as Related to Site, Altitude, and Vegetation in MICROBIAL ECOLOGY
  • 2003. Biological Soil Crusts: Structure, Function, and Management in NONE
  • 1989. Generalized Linear Models in NONE
  • 2011-02-18. Field evidence for flank instability, basal spreading and volcano-tectonic interactions at Mt Cameroon, West Africa in BULLETIN OF VOLCANOLOGY
  • 1996. Mapping plant biodiversity on Mount Cameroon in THE BIODIVERSITY OF AFRICAN PLANTS
  • 2016-01-22. Abundance-area relationships in bird assemblages along an Afrotropical elevational gradient: space limitation in montane forest selects for higher population densities in OECOLOGIA
  • 2007-07-06. Zonation of forest vegetation and soils of Mount Cameroon, West Africa in PLANT ECOLOGY
  • 2013-11-06. Pilot survey of cyanobacterial diversity from the neighborhood of San Gerardo de Rivas, Costa Rica with a brief summary of current knowledge of terrestrial cyanobacteria in Central America in BRAZILIAN JOURNAL OF BOTANY
  • 2018-08-01. Structure and function of the global topsoil microbiome in NATURE
  • 2011-09-10. Explaining the variation in the soil microbial community: do vegetation composition and soil chemistry explain the same or different parts of the microbial variation? in PLANT AND SOIL
  • 2012. Ecology of Cyanobacteria II, Their Diversity in Space and Time in NONE
  • 2008-12-04. Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats in BIOLOGIA
  • 2011-10-29. The Effect of Resource Islands on Abundance and Diversity of Bacteria in Arid Soils in MICROBIAL ECOLOGY
  • 2017-08-25. Composition of phototrophs in different soil types of Astrakhan oblast in EURASIAN SOIL SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10021-021-00698-6

    DOI

    http://dx.doi.org/10.1007/s10021-021-00698-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141966707


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Science and Management", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Soil Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Biology Centre v.v.i., Institute of Hydrobiology, The Czech Academy of Sciences, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic", 
              "id": "http://www.grid.ac/institutes/grid.448010.9", 
              "name": [
                "Institute of Botany, The Czech Academy of Sciences, Dukelska 135, 379 01, Trebon, Czech Republic", 
                "Biology Centre v.v.i., Institute of Hydrobiology, The Czech Academy of Sciences, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "\u0158eh\u00e1kov\u00e1", 
            "givenName": "Kl\u00e1ra", 
            "id": "sg:person.01140627464.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140627464.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biology Centre v.v.i., Institute of Hydrobiology, The Czech Academy of Sciences, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic", 
              "id": "http://www.grid.ac/institutes/grid.448010.9", 
              "name": [
                "Institute of Botany, The Czech Academy of Sciences, Dukelska 135, 379 01, Trebon, Czech Republic", 
                "Biology Centre v.v.i., Institute of Hydrobiology, The Czech Academy of Sciences, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "\u010capkov\u00e1", 
            "givenName": "Kate\u0159ina", 
            "id": "sg:person.01203513365.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203513365.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Botany, The Czech Academy of Sciences, Dukelska 135, 379 01, Trebon, Czech Republic", 
              "id": "http://www.grid.ac/institutes/grid.424923.a", 
              "name": [
                "Institute of Botany, The Czech Academy of Sciences, Dukelska 135, 379 01, Trebon, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Altman", 
            "givenName": "Jan", 
            "id": "sg:person.01167545601.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167545601.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Science, Palack\u00fd University in Olomouc, \u0160lechtitel\u016f 27, 783 71, Olomouc-Holice, Czech Republic", 
              "id": "http://www.grid.ac/institutes/grid.10979.36", 
              "name": [
                "Faculty of Science, Palack\u00fd University in Olomouc, \u0160lechtitel\u016f 27, 783 71, Olomouc-Holice, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dan\u010d\u00e1k", 
            "givenName": "Martin", 
            "id": "sg:person.01016133416.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016133416.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Science, Palack\u00fd University in Olomouc, \u0160lechtitel\u016f 27, 783 71, Olomouc-Holice, Czech Republic", 
              "id": "http://www.grid.ac/institutes/grid.10979.36", 
              "name": [
                "Faculty of Science, Palack\u00fd University in Olomouc, \u0160lechtitel\u016f 27, 783 71, Olomouc-Holice, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Majesk\u00fd", 
            "givenName": "\u013dubo\u0161", 
            "id": "sg:person.013446711407.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446711407.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Botany, Faculty of Science, University of South Bohemia, Na Zlate stoce 1, 370 05, Ceske Budejovice, Czech Republic", 
              "id": "http://www.grid.ac/institutes/grid.14509.39", 
              "name": [
                "Institute of Botany, The Czech Academy of Sciences, Dukelska 135, 379 01, Trebon, Czech Republic", 
                "Department of Botany, Faculty of Science, University of South Bohemia, Na Zlate stoce 1, 370 05, Ceske Budejovice, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dole\u017eal", 
            "givenName": "Ji\u0159\u00ed", 
            "id": "sg:person.014412577722.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412577722.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11104-011-0968-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012286610", 
              "https://doi.org/10.1007/s11104-011-0968-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40415-013-0030-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046538208", 
              "https://doi.org/10.1007/s40415-013-0030-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0386-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105928900", 
              "https://doi.org/10.1038/s41586-018-0386-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00445-011-0458-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046301600", 
              "https://doi.org/10.1007/s00445-011-0458-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00442-016-3554-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023906709", 
              "https://doi.org/10.1007/s00442-016-3554-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02858529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028810952", 
              "https://doi.org/10.1007/bf02858529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-3855-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049324255", 
              "https://doi.org/10.1007/978-94-007-3855-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11258-007-9326-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022964492", 
              "https://doi.org/10.1007/s11258-007-9326-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3242-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705877", 
              "https://doi.org/10.1007/978-1-4899-3242-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-005-0246-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001571561", 
              "https://doi.org/10.1007/s00248-005-0246-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1064229317080026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091328231", 
              "https://doi.org/10.1134/s1064229317080026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-0285-5_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024509739", 
              "https://doi.org/10.1007/978-94-009-0285-5_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-011-9957-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052926580", 
              "https://doi.org/10.1007/s00248-011-9957-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2478/s11756-008-0102-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042669254", 
              "https://doi.org/10.2478/s11756-008-0102-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-011-9878-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051085171", 
              "https://doi.org/10.1007/s00248-011-9878-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-56475-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012648423", 
              "https://doi.org/10.1007/978-3-642-56475-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00300-009-0751-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006077298", 
              "https://doi.org/10.1007/s00300-009-0751-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-10-18", 
        "datePublishedReg": "2021-10-18", 
        "description": "Soil phototrophic microbes play key roles in many ecosystem functions, including nutrient cycling, water absorption and retention, substrate weathering and soil stabilization, as well as colonization and persistence of other organisms. Knowledge about the diversity and biomass of soil phototrophs remains limited, especially in tropical forests and savannas. Here, we investigate changes in the diversity and abundance of soil phototrophs across the 4-km elevation gradient on Mt. Cameroon, Africa, from tropical forests (0\u20132300\u00a0m) to treeless savanna (2300\u20133600\u00a0m) and afroalpine vegetation (3600\u20134000\u00a0m). We evaluated the role of soil chemistry and vegetation cover in shaping phototrophic diversity patterns using soil, tree and herb census data from 224 permanent plots. Cyanobacteria from Chroococcales accounted for 65% of the species richness and\u2009>\u200970% of the biovolume. The highest phototrophic diversity and biovolume were recorded in treeless savanna and afroalpine vegetation, and lowest values in mid-elevation tropical forests with dense understory vegetation and hence limited light availability. Higher diversity and biovolume of soil phototrophs were associated with less productive, well-illuminated soils with lower organic matter and nitrogen content and higher pH, phosphorus and cation content. Changes in microbial richness and biovolume across tropical forests showed a U-shaped elevation pattern, with higher values recorded in coastal and lowland forests up to 1000\u00a0m elevation, the lowest values in the mid-elevation open-canopy forests with dense understory vegetation caused by disturbances of forest elephants and higher values again in montane forests between 1800 and 2200\u00a0m. Above the tree line, soil phototrophic biovolume also showed a U-shaped elevation pattern, with lower richness recorded in compact grasslands between 2700 and 3400\u00a0m. At lower-elevation savanna, soil phototrophs are indirectly supported by regular fires during the dry season, which reduces plant cover and increases soil phosphorus and cations, while barren lava fields at higher elevations around the summit support soil phototrophs directly via increased soil P and K content and indirectly by inhibiting plant growth and vegetation cover. Our results shed light on an overlooked part of soil biodiversity in major tropical ecosystems and uncover the role of various ecological filters in structuring phototrophic microbial communities in tropical soils.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10021-021-00698-6", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8862598", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.9699388", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7071005", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.9699496", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023054", 
            "issn": [
              "1432-9840", 
              "1435-0629"
            ], 
            "name": "Ecosystems", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "keywords": [
          "soil phototrophs", 
          "dense understory vegetation", 
          "tropical forests", 
          "soil chemistry", 
          "understory vegetation", 
          "vegetation cover", 
          "treeless savanna", 
          "elevation gradient", 
          "low organic matter", 
          "open canopy forest", 
          "phototrophic microbial communities", 
          "elevation pattern", 
          "soil biodiversity", 
          "ecosystem functions", 
          "limited light availability", 
          "ecological filters", 
          "nutrient cycling", 
          "species richness", 
          "afroalpine vegetation", 
          "plant cover", 
          "tropical ecosystems", 
          "soil P", 
          "tropical soils", 
          "lowland forests", 
          "regular fires", 
          "diversity patterns", 
          "forest elephants", 
          "montane forests", 
          "lower richness", 
          "diversity changes", 
          "permanent plots", 
          "phototrophic microbes", 
          "organic matter", 
          "tree line", 
          "high diversity", 
          "microbial communities", 
          "savanna", 
          "light availability", 
          "soil stabilization", 
          "forest", 
          "vegetation", 
          "higher elevations", 
          "dry season", 
          "microbial richness", 
          "soil", 
          "richness", 
          "plant growth", 
          "cover", 
          "K content", 
          "biovolume", 
          "nitrogen content", 
          "diversity", 
          "cation content", 
          "overlooked part", 
          "phototrophs", 
          "higher values", 
          "lower values", 
          "high pH", 
          "census data", 
          "gradient", 
          "biodiversity", 
          "grasslands", 
          "ecosystems", 
          "biomass", 
          "abundance", 
          "key role", 
          "lava field", 
          "Chroococcales", 
          "phosphorus", 
          "fire", 
          "cycling", 
          "patterns", 
          "elephants", 
          "plots", 
          "cyanobacteria", 
          "microbes", 
          "season", 
          "weathering", 
          "trees", 
          "community", 
          "content", 
          "colonization", 
          "Mt.", 
          "elevation", 
          "changes", 
          "persistence", 
          "organisms", 
          "disturbances", 
          "availability", 
          "Cameroon", 
          "matter", 
          "role", 
          "Africa", 
          "chemistry", 
          "pH", 
          "values", 
          "growth", 
          "retention", 
          "lines", 
          "function", 
          "knowledge", 
          "cations", 
          "part", 
          "stabilization", 
          "data", 
          "light", 
          "field", 
          "results", 
          "water absorption", 
          "absorption", 
          "filter"
        ], 
        "name": "Contrasting Patterns of Soil Chemistry and Vegetation Cover Determine Diversity Changes of Soil Phototrophs Along an Afrotropical Elevation Gradient", 
        "pagination": "1020-1036", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141966707"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10021-021-00698-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10021-021-00698-6", 
          "https://app.dimensions.ai/details/publication/pub.1141966707"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_901.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10021-021-00698-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10021-021-00698-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10021-021-00698-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10021-021-00698-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10021-021-00698-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    302 TRIPLES      21 PREDICATES      155 URIs      127 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10021-021-00698-6 schema:about anzsrc-for:05
    2 anzsrc-for:0502
    3 anzsrc-for:0503
    4 anzsrc-for:06
    5 anzsrc-for:0602
    6 schema:author N6154984bd98e4b96a47441325181323f
    7 schema:citation sg:pub.10.1007/978-1-4899-3242-6
    8 sg:pub.10.1007/978-3-642-56475-8
    9 sg:pub.10.1007/978-94-007-3855-3
    10 sg:pub.10.1007/978-94-009-0285-5_16
    11 sg:pub.10.1007/bf02858529
    12 sg:pub.10.1007/s00248-005-0246-4
    13 sg:pub.10.1007/s00248-011-9878-8
    14 sg:pub.10.1007/s00248-011-9957-x
    15 sg:pub.10.1007/s00300-009-0751-x
    16 sg:pub.10.1007/s00442-016-3554-0
    17 sg:pub.10.1007/s00445-011-0458-z
    18 sg:pub.10.1007/s11104-011-0968-7
    19 sg:pub.10.1007/s11258-007-9326-5
    20 sg:pub.10.1007/s40415-013-0030-5
    21 sg:pub.10.1038/s41586-018-0386-6
    22 sg:pub.10.1134/s1064229317080026
    23 sg:pub.10.2478/s11756-008-0102-3
    24 schema:datePublished 2021-10-18
    25 schema:datePublishedReg 2021-10-18
    26 schema:description Soil phototrophic microbes play key roles in many ecosystem functions, including nutrient cycling, water absorption and retention, substrate weathering and soil stabilization, as well as colonization and persistence of other organisms. Knowledge about the diversity and biomass of soil phototrophs remains limited, especially in tropical forests and savannas. Here, we investigate changes in the diversity and abundance of soil phototrophs across the 4-km elevation gradient on Mt. Cameroon, Africa, from tropical forests (0–2300 m) to treeless savanna (2300–3600 m) and afroalpine vegetation (3600–4000 m). We evaluated the role of soil chemistry and vegetation cover in shaping phototrophic diversity patterns using soil, tree and herb census data from 224 permanent plots. Cyanobacteria from Chroococcales accounted for 65% of the species richness and > 70% of the biovolume. The highest phototrophic diversity and biovolume were recorded in treeless savanna and afroalpine vegetation, and lowest values in mid-elevation tropical forests with dense understory vegetation and hence limited light availability. Higher diversity and biovolume of soil phototrophs were associated with less productive, well-illuminated soils with lower organic matter and nitrogen content and higher pH, phosphorus and cation content. Changes in microbial richness and biovolume across tropical forests showed a U-shaped elevation pattern, with higher values recorded in coastal and lowland forests up to 1000 m elevation, the lowest values in the mid-elevation open-canopy forests with dense understory vegetation caused by disturbances of forest elephants and higher values again in montane forests between 1800 and 2200 m. Above the tree line, soil phototrophic biovolume also showed a U-shaped elevation pattern, with lower richness recorded in compact grasslands between 2700 and 3400 m. At lower-elevation savanna, soil phototrophs are indirectly supported by regular fires during the dry season, which reduces plant cover and increases soil phosphorus and cations, while barren lava fields at higher elevations around the summit support soil phototrophs directly via increased soil P and K content and indirectly by inhibiting plant growth and vegetation cover. Our results shed light on an overlooked part of soil biodiversity in major tropical ecosystems and uncover the role of various ecological filters in structuring phototrophic microbial communities in tropical soils.
    27 schema:genre article
    28 schema:isAccessibleForFree false
    29 schema:isPartOf Nbceb6670730b424890ee43257f2f7d60
    30 Neec0cbe2f2d940e29368cb95b831bdc6
    31 sg:journal.1023054
    32 schema:keywords Africa
    33 Cameroon
    34 Chroococcales
    35 K content
    36 Mt.
    37 absorption
    38 abundance
    39 afroalpine vegetation
    40 availability
    41 biodiversity
    42 biomass
    43 biovolume
    44 cation content
    45 cations
    46 census data
    47 changes
    48 chemistry
    49 colonization
    50 community
    51 content
    52 cover
    53 cyanobacteria
    54 cycling
    55 data
    56 dense understory vegetation
    57 disturbances
    58 diversity
    59 diversity changes
    60 diversity patterns
    61 dry season
    62 ecological filters
    63 ecosystem functions
    64 ecosystems
    65 elephants
    66 elevation
    67 elevation gradient
    68 elevation pattern
    69 field
    70 filter
    71 fire
    72 forest
    73 forest elephants
    74 function
    75 gradient
    76 grasslands
    77 growth
    78 high diversity
    79 high pH
    80 higher elevations
    81 higher values
    82 key role
    83 knowledge
    84 lava field
    85 light
    86 light availability
    87 limited light availability
    88 lines
    89 low organic matter
    90 lower richness
    91 lower values
    92 lowland forests
    93 matter
    94 microbes
    95 microbial communities
    96 microbial richness
    97 montane forests
    98 nitrogen content
    99 nutrient cycling
    100 open canopy forest
    101 organic matter
    102 organisms
    103 overlooked part
    104 pH
    105 part
    106 patterns
    107 permanent plots
    108 persistence
    109 phosphorus
    110 phototrophic microbes
    111 phototrophic microbial communities
    112 phototrophs
    113 plant cover
    114 plant growth
    115 plots
    116 regular fires
    117 results
    118 retention
    119 richness
    120 role
    121 savanna
    122 season
    123 soil
    124 soil P
    125 soil biodiversity
    126 soil chemistry
    127 soil phototrophs
    128 soil stabilization
    129 species richness
    130 stabilization
    131 tree line
    132 treeless savanna
    133 trees
    134 tropical ecosystems
    135 tropical forests
    136 tropical soils
    137 understory vegetation
    138 values
    139 vegetation
    140 vegetation cover
    141 water absorption
    142 weathering
    143 schema:name Contrasting Patterns of Soil Chemistry and Vegetation Cover Determine Diversity Changes of Soil Phototrophs Along an Afrotropical Elevation Gradient
    144 schema:pagination 1020-1036
    145 schema:productId N81b49071afa44cfc97147ffa9bdd9e4c
    146 Nb78b9343057b41468d8fc37da21ab6af
    147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141966707
    148 https://doi.org/10.1007/s10021-021-00698-6
    149 schema:sdDatePublished 2022-10-01T06:48
    150 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    151 schema:sdPublisher N6381d5e6b6964a63806d9145799f9557
    152 schema:url https://doi.org/10.1007/s10021-021-00698-6
    153 sgo:license sg:explorer/license/
    154 sgo:sdDataset articles
    155 rdf:type schema:ScholarlyArticle
    156 N4942fe2168a94dc8b5eaf950d2487d86 rdf:first sg:person.01167545601.63
    157 rdf:rest N75576d755fdc4adb975959a287f24a29
    158 N5634c4325e5344c6ab1f7ba5608831cd rdf:first sg:person.013446711407.02
    159 rdf:rest N84f67cb906514e96997f919e82e97354
    160 N6154984bd98e4b96a47441325181323f rdf:first sg:person.01140627464.12
    161 rdf:rest N94057c5f29a54f0b92d2520e96442ce0
    162 N6381d5e6b6964a63806d9145799f9557 schema:name Springer Nature - SN SciGraph project
    163 rdf:type schema:Organization
    164 N75576d755fdc4adb975959a287f24a29 rdf:first sg:person.01016133416.56
    165 rdf:rest N5634c4325e5344c6ab1f7ba5608831cd
    166 N81b49071afa44cfc97147ffa9bdd9e4c schema:name dimensions_id
    167 schema:value pub.1141966707
    168 rdf:type schema:PropertyValue
    169 N84f67cb906514e96997f919e82e97354 rdf:first sg:person.014412577722.51
    170 rdf:rest rdf:nil
    171 N94057c5f29a54f0b92d2520e96442ce0 rdf:first sg:person.01203513365.73
    172 rdf:rest N4942fe2168a94dc8b5eaf950d2487d86
    173 Nb78b9343057b41468d8fc37da21ab6af schema:name doi
    174 schema:value 10.1007/s10021-021-00698-6
    175 rdf:type schema:PropertyValue
    176 Nbceb6670730b424890ee43257f2f7d60 schema:volumeNumber 25
    177 rdf:type schema:PublicationVolume
    178 Neec0cbe2f2d940e29368cb95b831bdc6 schema:issueNumber 5
    179 rdf:type schema:PublicationIssue
    180 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    181 schema:name Environmental Sciences
    182 rdf:type schema:DefinedTerm
    183 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
    184 schema:name Environmental Science and Management
    185 rdf:type schema:DefinedTerm
    186 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Soil Sciences
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Biological Sciences
    191 rdf:type schema:DefinedTerm
    192 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Ecology
    194 rdf:type schema:DefinedTerm
    195 sg:grant.7071005 http://pending.schema.org/fundedItem sg:pub.10.1007/s10021-021-00698-6
    196 rdf:type schema:MonetaryGrant
    197 sg:grant.8862598 http://pending.schema.org/fundedItem sg:pub.10.1007/s10021-021-00698-6
    198 rdf:type schema:MonetaryGrant
    199 sg:grant.9699388 http://pending.schema.org/fundedItem sg:pub.10.1007/s10021-021-00698-6
    200 rdf:type schema:MonetaryGrant
    201 sg:grant.9699496 http://pending.schema.org/fundedItem sg:pub.10.1007/s10021-021-00698-6
    202 rdf:type schema:MonetaryGrant
    203 sg:journal.1023054 schema:issn 1432-9840
    204 1435-0629
    205 schema:name Ecosystems
    206 schema:publisher Springer Nature
    207 rdf:type schema:Periodical
    208 sg:person.01016133416.56 schema:affiliation grid-institutes:grid.10979.36
    209 schema:familyName Dančák
    210 schema:givenName Martin
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016133416.56
    212 rdf:type schema:Person
    213 sg:person.01140627464.12 schema:affiliation grid-institutes:grid.448010.9
    214 schema:familyName Řeháková
    215 schema:givenName Klára
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140627464.12
    217 rdf:type schema:Person
    218 sg:person.01167545601.63 schema:affiliation grid-institutes:grid.424923.a
    219 schema:familyName Altman
    220 schema:givenName Jan
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167545601.63
    222 rdf:type schema:Person
    223 sg:person.01203513365.73 schema:affiliation grid-institutes:grid.448010.9
    224 schema:familyName Čapková
    225 schema:givenName Kateřina
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203513365.73
    227 rdf:type schema:Person
    228 sg:person.013446711407.02 schema:affiliation grid-institutes:grid.10979.36
    229 schema:familyName Majeský
    230 schema:givenName Ľuboš
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446711407.02
    232 rdf:type schema:Person
    233 sg:person.014412577722.51 schema:affiliation grid-institutes:grid.14509.39
    234 schema:familyName Doležal
    235 schema:givenName Jiří
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412577722.51
    237 rdf:type schema:Person
    238 sg:pub.10.1007/978-1-4899-3242-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705877
    239 https://doi.org/10.1007/978-1-4899-3242-6
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/978-3-642-56475-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012648423
    242 https://doi.org/10.1007/978-3-642-56475-8
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/978-94-007-3855-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049324255
    245 https://doi.org/10.1007/978-94-007-3855-3
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/978-94-009-0285-5_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024509739
    248 https://doi.org/10.1007/978-94-009-0285-5_16
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/bf02858529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028810952
    251 https://doi.org/10.1007/bf02858529
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s00248-005-0246-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001571561
    254 https://doi.org/10.1007/s00248-005-0246-4
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s00248-011-9878-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051085171
    257 https://doi.org/10.1007/s00248-011-9878-8
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/s00248-011-9957-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052926580
    260 https://doi.org/10.1007/s00248-011-9957-x
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/s00300-009-0751-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006077298
    263 https://doi.org/10.1007/s00300-009-0751-x
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/s00442-016-3554-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023906709
    266 https://doi.org/10.1007/s00442-016-3554-0
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1007/s00445-011-0458-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046301600
    269 https://doi.org/10.1007/s00445-011-0458-z
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1007/s11104-011-0968-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012286610
    272 https://doi.org/10.1007/s11104-011-0968-7
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/s11258-007-9326-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022964492
    275 https://doi.org/10.1007/s11258-007-9326-5
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1007/s40415-013-0030-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046538208
    278 https://doi.org/10.1007/s40415-013-0030-5
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/s41586-018-0386-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105928900
    281 https://doi.org/10.1038/s41586-018-0386-6
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1134/s1064229317080026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091328231
    284 https://doi.org/10.1134/s1064229317080026
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.2478/s11756-008-0102-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042669254
    287 https://doi.org/10.2478/s11756-008-0102-3
    288 rdf:type schema:CreativeWork
    289 grid-institutes:grid.10979.36 schema:alternateName Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc-Holice, Czech Republic
    290 schema:name Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc-Holice, Czech Republic
    291 rdf:type schema:Organization
    292 grid-institutes:grid.14509.39 schema:alternateName Department of Botany, Faculty of Science, University of South Bohemia, Na Zlate stoce 1, 370 05, Ceske Budejovice, Czech Republic
    293 schema:name Department of Botany, Faculty of Science, University of South Bohemia, Na Zlate stoce 1, 370 05, Ceske Budejovice, Czech Republic
    294 Institute of Botany, The Czech Academy of Sciences, Dukelska 135, 379 01, Trebon, Czech Republic
    295 rdf:type schema:Organization
    296 grid-institutes:grid.424923.a schema:alternateName Institute of Botany, The Czech Academy of Sciences, Dukelska 135, 379 01, Trebon, Czech Republic
    297 schema:name Institute of Botany, The Czech Academy of Sciences, Dukelska 135, 379 01, Trebon, Czech Republic
    298 rdf:type schema:Organization
    299 grid-institutes:grid.448010.9 schema:alternateName Biology Centre v.v.i., Institute of Hydrobiology, The Czech Academy of Sciences, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic
    300 schema:name Biology Centre v.v.i., Institute of Hydrobiology, The Czech Academy of Sciences, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic
    301 Institute of Botany, The Czech Academy of Sciences, Dukelska 135, 379 01, Trebon, Czech Republic
    302 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...