Bioactive materials to control cell cycle View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-10

AUTHORS

L. L. Hench, J. M. Polak, I. D. Xynos, L. D. K. Buttery

ABSTRACT

Many of the present generation biomaterials are still based upon the early concept that implantable materials should be bioinert and therefore designed to evoke minimal tissue response, if none. However, a growing body of clinical data demonstrates that the long survivability of these materials is hampered by high rates of failure, which is primarily attributed to interfacial instability. It has therefore become understood that this approach is not optimal. Modern approaches implicate the use of biomaterials that can actively interact with tissues and induce their intrinsic repair and regenerative potential. This involves control over the cell cycle, the molecular framework that controls cell proliferation and differentiation. Class A bioactive glass-ceramic materials were the first materials shown to endorse these properties and, depending upon the rate of resorption and release of ions, can create chemical gradients with specific biological actions over cells and tissues. Optimising this bioactive regenerative capacity of Bioactive glass-ceramics offers great hope for producing biomaterials that can stimulate growth, repair, and regeneration of any human tissue. More... »

PAGES

313-323

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s100190000055

DOI

http://dx.doi.org/10.1007/s100190000055

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016157391


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials, Imperial College School of Science and Technology, Prince Consort Road, London SW1 2BP, UK e-mail: l.hench@ic.ac.uk Tel.: +44-20-75946745, Fax: +44-20-5946809, GB", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Materials, Imperial College School of Science and Technology, Prince Consort Road, London SW1 2BP, UK e-mail: l.hench@ic.ac.uk Tel.: +44-20-75946745, Fax: +44-20-5946809, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hench", 
        "givenName": "L. L.", 
        "id": "sg:person.01316104724.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316104724.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Histochemistry, Imperial College School of Medicine, The Hammersmith Hospital, Ducane Rd, London W12 ONN, UK, GB", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Histochemistry, Imperial College School of Medicine, The Hammersmith Hospital, Ducane Rd, London W12 ONN, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Polak", 
        "givenName": "J. M.", 
        "id": "sg:person.0670441457.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670441457.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Histochemistry, Imperial College School of Medicine, The Hammersmith Hospital, Ducane Rd, London W12 ONN, UK, GB", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Histochemistry, Imperial College School of Medicine, The Hammersmith Hospital, Ducane Rd, London W12 ONN, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xynos", 
        "givenName": "I. D.", 
        "id": "sg:person.0647746644.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647746644.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Tissue Engineering, Imperial College School of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK, GB", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Centre for Tissue Engineering, Imperial College School of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK, GB"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buttery", 
        "givenName": "L. D. K.", 
        "id": "sg:person.011101227747.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101227747.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/382448a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014453235", 
          "https://doi.org/10.1038/382448a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-1377-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023768232", 
          "https://doi.org/10.1007/978-1-4471-1377-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100190050019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033452568", 
          "https://doi.org/10.1007/s100190050019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044218520", 
          "https://doi.org/10.1038/44188"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-10", 
    "datePublishedReg": "2000-10-01", 
    "description": "Abstract\u2002Many of the present generation biomaterials are still based upon the early concept that implantable materials should be bioinert and therefore designed to evoke minimal tissue response, if none. However, a growing body of clinical data demonstrates that the long survivability of these materials is hampered by high rates of failure, which is primarily attributed to interfacial instability. It has therefore become understood that this approach is not optimal. Modern approaches implicate the use of biomaterials that can actively interact with tissues and induce their intrinsic repair and regenerative potential. This involves control over the cell cycle, the molecular framework that controls cell proliferation and differentiation. Class A bioactive glass-ceramic materials were the first materials shown to endorse these properties and, depending upon the rate of resorption and release of ions, can create chemical gradients with specific biological actions over cells and tissues. Optimising this bioactive regenerative capacity of Bioactive glass-ceramics offers great hope for producing biomaterials that can stimulate growth, repair, and regeneration of any human tissue.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s100190000055", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1137488", 
        "issn": [
          "1432-8917", 
          "1433-075X"
        ], 
        "name": "Materials Research Innovations", 
        "publisher": "Taylor & Francis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "glass-ceramic materials", 
      "bioactive glass-ceramic material", 
      "use of biomaterials", 
      "interfacial instability", 
      "implantable materials", 
      "bioactive materials", 
      "biomaterials", 
      "release of ions", 
      "first material", 
      "materials", 
      "minimal tissue response", 
      "tissue response", 
      "intrinsic repair", 
      "longer survivability", 
      "chemical gradients", 
      "properties", 
      "cycle", 
      "gradient", 
      "rate of resorption", 
      "instability", 
      "rate", 
      "capacity", 
      "approach", 
      "survivability", 
      "regeneration", 
      "earlier concepts", 
      "failure", 
      "modern approaches", 
      "potential", 
      "ions", 
      "concept", 
      "control", 
      "use", 
      "body", 
      "repair", 
      "growth", 
      "human tissues", 
      "release", 
      "framework", 
      "data", 
      "response", 
      "tissue", 
      "high rate", 
      "class", 
      "regenerative capacity", 
      "resorption", 
      "cells", 
      "great hope", 
      "action", 
      "specific biological actions", 
      "proliferation", 
      "differentiation", 
      "hope", 
      "cell proliferation", 
      "molecular framework", 
      "clinical data", 
      "biological actions", 
      "cell cycle", 
      "present generation biomaterials", 
      "generation biomaterials", 
      "bioactive regenerative capacity"
    ], 
    "name": "Bioactive materials to control cell cycle", 
    "pagination": "313-323", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016157391"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s100190000055"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s100190000055", 
      "https://app.dimensions.ai/details/publication/pub.1016157391"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_345.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s100190000055"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s100190000055'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s100190000055'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s100190000055'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s100190000055'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      22 PREDICATES      91 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s100190000055 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author N87c8a7b88614479baa3df380023954ae
4 schema:citation sg:pub.10.1007/978-1-4471-1377-5
5 sg:pub.10.1007/s100190050019
6 sg:pub.10.1038/382448a0
7 sg:pub.10.1038/44188
8 schema:datePublished 2000-10
9 schema:datePublishedReg 2000-10-01
10 schema:description Abstract Many of the present generation biomaterials are still based upon the early concept that implantable materials should be bioinert and therefore designed to evoke minimal tissue response, if none. However, a growing body of clinical data demonstrates that the long survivability of these materials is hampered by high rates of failure, which is primarily attributed to interfacial instability. It has therefore become understood that this approach is not optimal. Modern approaches implicate the use of biomaterials that can actively interact with tissues and induce their intrinsic repair and regenerative potential. This involves control over the cell cycle, the molecular framework that controls cell proliferation and differentiation. Class A bioactive glass-ceramic materials were the first materials shown to endorse these properties and, depending upon the rate of resorption and release of ions, can create chemical gradients with specific biological actions over cells and tissues. Optimising this bioactive regenerative capacity of Bioactive glass-ceramics offers great hope for producing biomaterials that can stimulate growth, repair, and regeneration of any human tissue.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nac872bb3b23945bc9c27af5e435c75e0
15 Ndc56df8b79b949af8bd67ac840290a0b
16 sg:journal.1137488
17 schema:keywords action
18 approach
19 bioactive glass-ceramic material
20 bioactive materials
21 bioactive regenerative capacity
22 biological actions
23 biomaterials
24 body
25 capacity
26 cell cycle
27 cell proliferation
28 cells
29 chemical gradients
30 class
31 clinical data
32 concept
33 control
34 cycle
35 data
36 differentiation
37 earlier concepts
38 failure
39 first material
40 framework
41 generation biomaterials
42 glass-ceramic materials
43 gradient
44 great hope
45 growth
46 high rate
47 hope
48 human tissues
49 implantable materials
50 instability
51 interfacial instability
52 intrinsic repair
53 ions
54 longer survivability
55 materials
56 minimal tissue response
57 modern approaches
58 molecular framework
59 potential
60 present generation biomaterials
61 proliferation
62 properties
63 rate
64 rate of resorption
65 regeneration
66 regenerative capacity
67 release
68 release of ions
69 repair
70 resorption
71 response
72 specific biological actions
73 survivability
74 tissue
75 tissue response
76 use
77 use of biomaterials
78 schema:name Bioactive materials to control cell cycle
79 schema:pagination 313-323
80 schema:productId Ndd209bd36d23463c9a77c124acc54494
81 Nea45c429067048ffae110e1ffbe2b70a
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016157391
83 https://doi.org/10.1007/s100190000055
84 schema:sdDatePublished 2022-01-01T18:11
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nde3fdc29c28f431d89f709c7abb780f0
87 schema:url https://doi.org/10.1007/s100190000055
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N05642e2a2a23404b9344b83c09b97219 rdf:first sg:person.011101227747.44
92 rdf:rest rdf:nil
93 N2fbc96ab110d48e1948fdf132fe1fa9a rdf:first sg:person.0670441457.36
94 rdf:rest N54112b30015744999f88f02ea6ea4bbf
95 N54112b30015744999f88f02ea6ea4bbf rdf:first sg:person.0647746644.62
96 rdf:rest N05642e2a2a23404b9344b83c09b97219
97 N87c8a7b88614479baa3df380023954ae rdf:first sg:person.01316104724.04
98 rdf:rest N2fbc96ab110d48e1948fdf132fe1fa9a
99 Nac872bb3b23945bc9c27af5e435c75e0 schema:volumeNumber 3
100 rdf:type schema:PublicationVolume
101 Ndc56df8b79b949af8bd67ac840290a0b schema:issueNumber 6
102 rdf:type schema:PublicationIssue
103 Ndd209bd36d23463c9a77c124acc54494 schema:name doi
104 schema:value 10.1007/s100190000055
105 rdf:type schema:PropertyValue
106 Nde3fdc29c28f431d89f709c7abb780f0 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nea45c429067048ffae110e1ffbe2b70a schema:name dimensions_id
109 schema:value pub.1016157391
110 rdf:type schema:PropertyValue
111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
112 schema:name Engineering
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
115 schema:name Biomedical Engineering
116 rdf:type schema:DefinedTerm
117 sg:journal.1137488 schema:issn 1432-8917
118 1433-075X
119 schema:name Materials Research Innovations
120 schema:publisher Taylor & Francis
121 rdf:type schema:Periodical
122 sg:person.011101227747.44 schema:affiliation grid-institutes:grid.7445.2
123 schema:familyName Buttery
124 schema:givenName L. D. K.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101227747.44
126 rdf:type schema:Person
127 sg:person.01316104724.04 schema:affiliation grid-institutes:grid.7445.2
128 schema:familyName Hench
129 schema:givenName L. L.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316104724.04
131 rdf:type schema:Person
132 sg:person.0647746644.62 schema:affiliation grid-institutes:grid.7445.2
133 schema:familyName Xynos
134 schema:givenName I. D.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647746644.62
136 rdf:type schema:Person
137 sg:person.0670441457.36 schema:affiliation grid-institutes:grid.7445.2
138 schema:familyName Polak
139 schema:givenName J. M.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670441457.36
141 rdf:type schema:Person
142 sg:pub.10.1007/978-1-4471-1377-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023768232
143 https://doi.org/10.1007/978-1-4471-1377-5
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s100190050019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033452568
146 https://doi.org/10.1007/s100190050019
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/382448a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014453235
149 https://doi.org/10.1038/382448a0
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/44188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044218520
152 https://doi.org/10.1038/44188
153 rdf:type schema:CreativeWork
154 grid-institutes:grid.7445.2 schema:alternateName Centre for Tissue Engineering, Imperial College School of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK, GB
155 Department of Histochemistry, Imperial College School of Medicine, The Hammersmith Hospital, Ducane Rd, London W12 ONN, UK, GB
156 Department of Materials, Imperial College School of Science and Technology, Prince Consort Road, London SW1 2BP, UK e-mail: l.hench@ic.ac.uk Tel.: +44-20-75946745, Fax: +44-20-5946809, GB
157 schema:name Centre for Tissue Engineering, Imperial College School of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK, GB
158 Department of Histochemistry, Imperial College School of Medicine, The Hammersmith Hospital, Ducane Rd, London W12 ONN, UK, GB
159 Department of Materials, Imperial College School of Science and Technology, Prince Consort Road, London SW1 2BP, UK e-mail: l.hench@ic.ac.uk Tel.: +44-20-75946745, Fax: +44-20-5946809, GB
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...