Digital implementation of Hodgkin–Huxley neuron model for neurological diseases studies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-03

AUTHORS

Timothée Levi, Farad Khoyratee, Sylvain Saïghi, Yoshiho Ikeuchi

ABSTRACT

Neurological disorders affect millions of people which influence their cognitive and/or motor capabilities. The realization of a prosthesis must consider the biological activity of the cells and the connection between machine and biological cells. Biomimetic neural network is one solution in front of neurological diseases. The neuron replacement should be processed by reproducing the timing and the shape of the spike. Several mathematical equations which model neural activities exist. The most biologically plausible one is the Hodgkin–Huxley (HH) model. The connection between electrical devices and living cells require a tunable real-time system. The field programmable gate array (FPGA) is a nice component including flexibility, speed and stability. Here, we propose an implementation of HH neurons in FPGA serving as a presage for a modulating network opening a large scale of possibilities such as damage cells replacement and the study of the effect of the cells disease on the neural network. More... »

PAGES

10-14

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10015-017-0397-7

DOI

http://dx.doi.org/10.1007/s10015-017-0397-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091892737


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "IMS Laboratory, University of Bordeaux, Bordeaux, France", 
            "Institute of Industrial Science, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levi", 
        "givenName": "Timoth\u00e9e", 
        "id": "sg:person.01344054500.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344054500.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "IMS Laboratory, University of Bordeaux, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khoyratee", 
        "givenName": "Farad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "IMS Laboratory, University of Bordeaux, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sa\u00efghi", 
        "givenName": "Sylvain", 
        "id": "sg:person.0705115506.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705115506.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Institute of Industrial Science, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ikeuchi", 
        "givenName": "Yoshiho", 
        "id": "sg:person.01144537437.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144537437.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3389/fnins.2011.00073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003969783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2016.00067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005625701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007795162", 
          "https://doi.org/10.1038/nature04970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007795162", 
          "https://doi.org/10.1038/nature04970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007795162", 
          "https://doi.org/10.1038/nature04970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature20118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009231214", 
          "https://doi.org/10.1038/nature20118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017695173", 
          "https://doi.org/10.1038/nature11076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2014.00379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021460638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2013.00215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021781267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10015-014-0160-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022400020", 
          "https://doi.org/10.1007/s10015-014-0160-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024225982", 
          "https://doi.org/10.1038/nrn2653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024225982", 
          "https://doi.org/10.1038/nrn2653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.2290-13.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026432053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0361-9230(99)00256-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030343104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1952.sp004764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038260469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/354515a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044229575", 
          "https://doi.org/10.1038/354515a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncir.2013.00040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051128026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2003.820440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2012.6346731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078682522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2012.6346731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078682522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/artl_a_00219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083397045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ciss.2011.5766099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094158169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/newcas.2008.4606391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094260027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/biocas.2008.4696931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095024453"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "Neurological disorders affect millions of people which influence their cognitive and/or motor capabilities. The realization of a prosthesis must consider the biological activity of the cells and the connection between machine and biological cells. Biomimetic neural network is one solution in front of neurological diseases. The neuron replacement should be processed by reproducing the timing and the shape of the spike. Several mathematical equations which model neural activities exist. The most biologically plausible one is the Hodgkin\u2013Huxley (HH) model. The connection between electrical devices and living cells require a tunable real-time system. The field programmable gate array (FPGA) is a nice component including flexibility, speed and stability. Here, we propose an implementation of HH neurons in FPGA serving as a presage for a modulating network opening a large scale of possibilities such as damage cells replacement and the study of the effect of the cells disease on the neural network.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10015-017-0397-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135365", 
        "issn": [
          "1433-5298", 
          "1614-7456"
        ], 
        "name": "Artificial Life and Robotics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Digital implementation of Hodgkin\u2013Huxley neuron model for neurological diseases studies", 
    "pagination": "10-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bbe5b592837d1f4964427a1f5351599eccf14d060ac481fe72d36bde2a87f6c2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10015-017-0397-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091892737"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10015-017-0397-7", 
      "https://app.dimensions.ai/details/publication/pub.1091892737"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10015-017-0397-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10015-017-0397-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10015-017-0397-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10015-017-0397-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10015-017-0397-7'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10015-017-0397-7 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N76e4d30fedc648a0bda21a4ba160ce0e
4 schema:citation sg:pub.10.1007/s10015-014-0160-2
5 sg:pub.10.1038/354515a0
6 sg:pub.10.1038/nature04970
7 sg:pub.10.1038/nature11076
8 sg:pub.10.1038/nature20118
9 sg:pub.10.1038/nrn2653
10 https://doi.org/10.1016/s0361-9230(99)00256-7
11 https://doi.org/10.1109/biocas.2008.4696931
12 https://doi.org/10.1109/ciss.2011.5766099
13 https://doi.org/10.1109/embc.2012.6346731
14 https://doi.org/10.1109/newcas.2008.4606391
15 https://doi.org/10.1109/tnn.2003.820440
16 https://doi.org/10.1113/jphysiol.1952.sp004764
17 https://doi.org/10.1162/artl_a_00219
18 https://doi.org/10.1523/jneurosci.2290-13.2013
19 https://doi.org/10.3389/fncir.2013.00040
20 https://doi.org/10.3389/fnins.2011.00073
21 https://doi.org/10.3389/fnins.2013.00215
22 https://doi.org/10.3389/fnins.2014.00379
23 https://doi.org/10.3389/fnins.2016.00067
24 schema:datePublished 2018-03
25 schema:datePublishedReg 2018-03-01
26 schema:description Neurological disorders affect millions of people which influence their cognitive and/or motor capabilities. The realization of a prosthesis must consider the biological activity of the cells and the connection between machine and biological cells. Biomimetic neural network is one solution in front of neurological diseases. The neuron replacement should be processed by reproducing the timing and the shape of the spike. Several mathematical equations which model neural activities exist. The most biologically plausible one is the Hodgkin–Huxley (HH) model. The connection between electrical devices and living cells require a tunable real-time system. The field programmable gate array (FPGA) is a nice component including flexibility, speed and stability. Here, we propose an implementation of HH neurons in FPGA serving as a presage for a modulating network opening a large scale of possibilities such as damage cells replacement and the study of the effect of the cells disease on the neural network.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N931e1c96218a43f583fec71bd7c2fe18
31 Nfd4fdbde512d443fb0b517e5943243ef
32 sg:journal.1135365
33 schema:name Digital implementation of Hodgkin–Huxley neuron model for neurological diseases studies
34 schema:pagination 10-14
35 schema:productId N100e7e3a152c41708eda97fef4af97f5
36 N897448f1fad844939b09af71a69ee71c
37 Nd3e6a8d8bcd94e8d9b1d01916813365a
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091892737
39 https://doi.org/10.1007/s10015-017-0397-7
40 schema:sdDatePublished 2019-04-10T20:01
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N5367c95773a34fc390bab761a0af830c
43 schema:url http://link.springer.com/10.1007%2Fs10015-017-0397-7
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N100e7e3a152c41708eda97fef4af97f5 schema:name dimensions_id
48 schema:value pub.1091892737
49 rdf:type schema:PropertyValue
50 N492f51e250da4bcc948866e8eef15954 rdf:first sg:person.0705115506.81
51 rdf:rest Nbd9baf5b22da4b199dc77f55717a782a
52 N5367c95773a34fc390bab761a0af830c schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N5a12f714fdc049d5a0cb94bddac435cf schema:affiliation https://www.grid.ac/institutes/grid.412041.2
55 schema:familyName Khoyratee
56 schema:givenName Farad
57 rdf:type schema:Person
58 N76e4d30fedc648a0bda21a4ba160ce0e rdf:first sg:person.01344054500.28
59 rdf:rest Nd1436e35d978403eb299ebc3c03dd6ad
60 N897448f1fad844939b09af71a69ee71c schema:name readcube_id
61 schema:value bbe5b592837d1f4964427a1f5351599eccf14d060ac481fe72d36bde2a87f6c2
62 rdf:type schema:PropertyValue
63 N931e1c96218a43f583fec71bd7c2fe18 schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 Nbd9baf5b22da4b199dc77f55717a782a rdf:first sg:person.01144537437.19
66 rdf:rest rdf:nil
67 Nd1436e35d978403eb299ebc3c03dd6ad rdf:first N5a12f714fdc049d5a0cb94bddac435cf
68 rdf:rest N492f51e250da4bcc948866e8eef15954
69 Nd3e6a8d8bcd94e8d9b1d01916813365a schema:name doi
70 schema:value 10.1007/s10015-017-0397-7
71 rdf:type schema:PropertyValue
72 Nfd4fdbde512d443fb0b517e5943243ef schema:volumeNumber 23
73 rdf:type schema:PublicationVolume
74 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
75 schema:name Medical and Health Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
78 schema:name Neurosciences
79 rdf:type schema:DefinedTerm
80 sg:journal.1135365 schema:issn 1433-5298
81 1614-7456
82 schema:name Artificial Life and Robotics
83 rdf:type schema:Periodical
84 sg:person.01144537437.19 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
85 schema:familyName Ikeuchi
86 schema:givenName Yoshiho
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144537437.19
88 rdf:type schema:Person
89 sg:person.01344054500.28 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
90 schema:familyName Levi
91 schema:givenName Timothée
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344054500.28
93 rdf:type schema:Person
94 sg:person.0705115506.81 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
95 schema:familyName Saïghi
96 schema:givenName Sylvain
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705115506.81
98 rdf:type schema:Person
99 sg:pub.10.1007/s10015-014-0160-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022400020
100 https://doi.org/10.1007/s10015-014-0160-2
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/354515a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044229575
103 https://doi.org/10.1038/354515a0
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nature04970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007795162
106 https://doi.org/10.1038/nature04970
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/nature11076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017695173
109 https://doi.org/10.1038/nature11076
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nature20118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009231214
112 https://doi.org/10.1038/nature20118
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nrn2653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024225982
115 https://doi.org/10.1038/nrn2653
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0361-9230(99)00256-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030343104
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/biocas.2008.4696931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095024453
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/ciss.2011.5766099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094158169
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/embc.2012.6346731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078682522
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/newcas.2008.4606391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094260027
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/tnn.2003.820440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716640
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1113/jphysiol.1952.sp004764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038260469
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1162/artl_a_00219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083397045
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1523/jneurosci.2290-13.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026432053
134 rdf:type schema:CreativeWork
135 https://doi.org/10.3389/fncir.2013.00040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051128026
136 rdf:type schema:CreativeWork
137 https://doi.org/10.3389/fnins.2011.00073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003969783
138 rdf:type schema:CreativeWork
139 https://doi.org/10.3389/fnins.2013.00215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021781267
140 rdf:type schema:CreativeWork
141 https://doi.org/10.3389/fnins.2014.00379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021460638
142 rdf:type schema:CreativeWork
143 https://doi.org/10.3389/fnins.2016.00067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005625701
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
146 schema:name IMS Laboratory, University of Bordeaux, Bordeaux, France
147 Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
148 rdf:type schema:Organization
149 https://www.grid.ac/institutes/grid.412041.2 schema:alternateName University of Bordeaux
150 schema:name IMS Laboratory, University of Bordeaux, Bordeaux, France
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...