A trajectory generation method for mobile robot based on iterative extension-like process View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07-28

AUTHORS

Kuniaki Kawabata

ABSTRACT

In this paper, we propose a trajectory generation method for mobile robot based on iterative extension-like process. Due to use mobile robots in the real world, trajectory generation must be done depending on the faced situation on each occasion. Proposed method enables online iterative trajectory extension process based on a low-order polynomial curve named as trajectory segment. The waypoints on the existing trajectory segment and a waypoint designated every fixed interval are the constraints to trigger the trajectory extension. For maintaining the smooth continuity of the trajectory, the velocity state must be sustained at the connecting point. Resultantly, the trajectory segments are organized into a single smooth trajectory. More... »

PAGES

500-509

References to SciGraph publications

  • 2013-10-12. Spline-Based RRT Path Planner for Non-Holonomic Robots in JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10015-016-0305-6

    DOI

    http://dx.doi.org/10.1007/s10015-016-0305-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008153179


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Japan Atomic Energy Agency, 1-22, Yamadaoka, 979-0513, Naraha, Futaba, Fukushima, Japan", 
              "id": "http://www.grid.ac/institutes/grid.20256.33", 
              "name": [
                "Japan Atomic Energy Agency, 1-22, Yamadaoka, 979-0513, Naraha, Futaba, Fukushima, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kawabata", 
            "givenName": "Kuniaki", 
            "id": "sg:person.011207745276.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207745276.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10846-013-9963-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010036314", 
              "https://doi.org/10.1007/s10846-013-9963-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-07-28", 
        "datePublishedReg": "2016-07-28", 
        "description": "In this paper, we propose a trajectory generation method for mobile robot based on iterative extension-like process. Due to use mobile robots in the real world, trajectory generation must be done depending on the faced situation on each occasion. Proposed method enables online iterative trajectory extension process based on a low-order polynomial curve named as trajectory segment. The waypoints on the existing trajectory segment and a waypoint designated every fixed interval are the constraints to trigger the trajectory extension. For maintaining the smooth continuity of the trajectory, the velocity state must be sustained at the connecting point. Resultantly, the trajectory segments are organized into a single smooth trajectory.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10015-016-0305-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135365", 
            "issn": [
              "1433-5298", 
              "1614-7456"
            ], 
            "name": "Artificial Life and Robotics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "mobile robot", 
          "trajectory generation method", 
          "trajectory segments", 
          "low-order polynomial curve", 
          "generation method", 
          "faced situation", 
          "trajectory generation", 
          "smooth trajectories", 
          "robot", 
          "real world", 
          "trajectory extension", 
          "waypoints", 
          "polynomial curve", 
          "velocity states", 
          "connecting point", 
          "constraints", 
          "method", 
          "process", 
          "trajectories", 
          "extension", 
          "extension process", 
          "situation", 
          "generation", 
          "world", 
          "segments", 
          "point", 
          "smooth continuity", 
          "state", 
          "continuity", 
          "curves", 
          "intervals", 
          "occasions", 
          "paper", 
          "iterative extension-like process", 
          "extension-like process", 
          "iterative trajectory extension process", 
          "trajectory extension process", 
          "single smooth trajectory"
        ], 
        "name": "A trajectory generation method for mobile robot based on iterative extension-like process", 
        "pagination": "500-509", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008153179"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10015-016-0305-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10015-016-0305-6", 
          "https://app.dimensions.ai/details/publication/pub.1008153179"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_717.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10015-016-0305-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10015-016-0305-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10015-016-0305-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10015-016-0305-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10015-016-0305-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    100 TRIPLES      22 PREDICATES      64 URIs      55 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10015-016-0305-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nc983802ad0ca45188f9a63b6f0b2a9c2
    4 schema:citation sg:pub.10.1007/s10846-013-9963-y
    5 schema:datePublished 2016-07-28
    6 schema:datePublishedReg 2016-07-28
    7 schema:description In this paper, we propose a trajectory generation method for mobile robot based on iterative extension-like process. Due to use mobile robots in the real world, trajectory generation must be done depending on the faced situation on each occasion. Proposed method enables online iterative trajectory extension process based on a low-order polynomial curve named as trajectory segment. The waypoints on the existing trajectory segment and a waypoint designated every fixed interval are the constraints to trigger the trajectory extension. For maintaining the smooth continuity of the trajectory, the velocity state must be sustained at the connecting point. Resultantly, the trajectory segments are organized into a single smooth trajectory.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N4f437b7b55074d678478fb8638c6d12d
    12 Nce584662947b4180be494e7e420331c4
    13 sg:journal.1135365
    14 schema:keywords connecting point
    15 constraints
    16 continuity
    17 curves
    18 extension
    19 extension process
    20 extension-like process
    21 faced situation
    22 generation
    23 generation method
    24 intervals
    25 iterative extension-like process
    26 iterative trajectory extension process
    27 low-order polynomial curve
    28 method
    29 mobile robot
    30 occasions
    31 paper
    32 point
    33 polynomial curve
    34 process
    35 real world
    36 robot
    37 segments
    38 single smooth trajectory
    39 situation
    40 smooth continuity
    41 smooth trajectories
    42 state
    43 trajectories
    44 trajectory extension
    45 trajectory extension process
    46 trajectory generation
    47 trajectory generation method
    48 trajectory segments
    49 velocity states
    50 waypoints
    51 world
    52 schema:name A trajectory generation method for mobile robot based on iterative extension-like process
    53 schema:pagination 500-509
    54 schema:productId Nb62aac3401a84e19ad65a2998af594ca
    55 Nf9958ae281d64fc9a9f1320e4ead422a
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008153179
    57 https://doi.org/10.1007/s10015-016-0305-6
    58 schema:sdDatePublished 2022-01-01T18:41
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N24f085fd804d4ba0bac341ec6db7519f
    61 schema:url https://doi.org/10.1007/s10015-016-0305-6
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N24f085fd804d4ba0bac341ec6db7519f schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N4f437b7b55074d678478fb8638c6d12d schema:issueNumber 4
    68 rdf:type schema:PublicationIssue
    69 Nb62aac3401a84e19ad65a2998af594ca schema:name doi
    70 schema:value 10.1007/s10015-016-0305-6
    71 rdf:type schema:PropertyValue
    72 Nc983802ad0ca45188f9a63b6f0b2a9c2 rdf:first sg:person.011207745276.80
    73 rdf:rest rdf:nil
    74 Nce584662947b4180be494e7e420331c4 schema:volumeNumber 21
    75 rdf:type schema:PublicationVolume
    76 Nf9958ae281d64fc9a9f1320e4ead422a schema:name dimensions_id
    77 schema:value pub.1008153179
    78 rdf:type schema:PropertyValue
    79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Information and Computing Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Artificial Intelligence and Image Processing
    84 rdf:type schema:DefinedTerm
    85 sg:journal.1135365 schema:issn 1433-5298
    86 1614-7456
    87 schema:name Artificial Life and Robotics
    88 schema:publisher Springer Nature
    89 rdf:type schema:Periodical
    90 sg:person.011207745276.80 schema:affiliation grid-institutes:grid.20256.33
    91 schema:familyName Kawabata
    92 schema:givenName Kuniaki
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207745276.80
    94 rdf:type schema:Person
    95 sg:pub.10.1007/s10846-013-9963-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010036314
    96 https://doi.org/10.1007/s10846-013-9963-y
    97 rdf:type schema:CreativeWork
    98 grid-institutes:grid.20256.33 schema:alternateName Japan Atomic Energy Agency, 1-22, Yamadaoka, 979-0513, Naraha, Futaba, Fukushima, Japan
    99 schema:name Japan Atomic Energy Agency, 1-22, Yamadaoka, 979-0513, Naraha, Futaba, Fukushima, Japan
    100 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...