Bifurcation analysis in a silicon neuron View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-10

AUTHORS

Filippo Grassia, Timothée Lévi, Sylvain Saïghi, Takashi Kohno

ABSTRACT

In this paper, we describe an analysis of the nonlinear dynamical phenomenon associated with a silicon neuron. Our silicon neuron in Very Large Scale Integration (VLSI) integrates Hodgkin–Huxley (HH) model formalism, including the membrane voltage dependency of temporal dynamics. Analysis of the bifurcation conditions allow us to identify different regimes in the parameter space that are desirable for biasing our silicon neuron. This approach of studying bifurcations is useful because it is believed that computational properties of neurons are based on the bifurcations exhibited by these dynamical systems in response to some changing stimulus. We describe numerical simulations of the Hopf bifurcation which is characteristic of class 2 excitability in the HH model. We also show experimental measurements of an observed phenomenon in biological neurons and termed excitation block, firing rate and effect of current impulses. Hence, by showing that this silicon neuron has similar bifurcations to a certain class of biological neurons, we can claim that the silicon neuron can also perform similar computations. More... »

PAGES

53-58

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10015-012-0016-6

DOI

http://dx.doi.org/10.1007/s10015-012-0016-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024876557


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
          "id": "https://www.grid.ac/institutes/grid.462974.a", 
          "name": [
            "Laboratoire d\u2019Int\u00e9gration du Mat\u00e9riau au Syst\u00e8me, UMR CNRS 5218, Universit\u00e9 de Bordeaux, 351 Cours de la Lib\u00e9ration, 33405, Talence, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grassia", 
        "givenName": "Filippo", 
        "id": "sg:person.01200044606.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200044606.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
          "id": "https://www.grid.ac/institutes/grid.462974.a", 
          "name": [
            "Laboratoire d\u2019Int\u00e9gration du Mat\u00e9riau au Syst\u00e8me, UMR CNRS 5218, Universit\u00e9 de Bordeaux, 351 Cours de la Lib\u00e9ration, 33405, Talence, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00e9vi", 
        "givenName": "Timoth\u00e9e", 
        "id": "sg:person.01344054500.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344054500.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
          "id": "https://www.grid.ac/institutes/grid.462974.a", 
          "name": [
            "Laboratoire d\u2019Int\u00e9gration du Mat\u00e9riau au Syst\u00e8me, UMR CNRS 5218, Universit\u00e9 de Bordeaux, 351 Cours de la Lib\u00e9ration, 33405, Talence, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sa\u00efghi", 
        "givenName": "Sylvain", 
        "id": "sg:person.0705115506.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705115506.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohno", 
        "givenName": "Takashi", 
        "id": "sg:person.011424452511.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424452511.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3389/fnins.2011.00134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005565824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1948.sp004260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025499115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(78)90168-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026511479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1952.sp004764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038260469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/101.526876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061086429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbcas.2010.2051224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061522716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbcas.2010.2078816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061522734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2003.820390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2005.844855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2005.844855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127400000840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062953366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/23/5/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064229617"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10", 
    "datePublishedReg": "2012-10-01", 
    "description": "In this paper, we describe an analysis of the nonlinear dynamical phenomenon associated with a silicon neuron. Our silicon neuron in Very Large Scale Integration (VLSI) integrates Hodgkin\u2013Huxley (HH) model formalism, including the membrane voltage dependency of temporal dynamics. Analysis of the bifurcation conditions allow us to identify different regimes in the parameter space that are desirable for biasing our silicon neuron. This approach of studying bifurcations is useful because it is believed that computational properties of neurons are based on the bifurcations exhibited by these dynamical systems in response to some changing stimulus. We describe numerical simulations of the Hopf bifurcation which is characteristic of class 2 excitability in the HH model. We also show experimental measurements of an observed phenomenon in biological neurons and termed excitation block, firing rate and effect of current impulses. Hence, by showing that this silicon neuron has similar bifurcations to a certain class of biological neurons, we can claim that the silicon neuron can also perform similar computations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10015-012-0016-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3775777", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3787927", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1135365", 
        "issn": [
          "1433-5298", 
          "1614-7456"
        ], 
        "name": "Artificial Life and Robotics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Bifurcation analysis in a silicon neuron", 
    "pagination": "53-58", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76833d3f97d64ce88d68c54f6ba949b5a4156a4f8275bff5078813b9faaba9e2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10015-012-0016-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024876557"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10015-012-0016-6", 
      "https://app.dimensions.ai/details/publication/pub.1024876557"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10015-012-0016-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10015-012-0016-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10015-012-0016-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10015-012-0016-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10015-012-0016-6'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10015-012-0016-6 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N0f5f6ceb5b164d2587f297d17255f47d
4 schema:citation https://doi.org/10.1016/0022-5193(78)90168-6
5 https://doi.org/10.1109/101.526876
6 https://doi.org/10.1109/tbcas.2010.2051224
7 https://doi.org/10.1109/tbcas.2010.2078816
8 https://doi.org/10.1109/tbme.2003.820390
9 https://doi.org/10.1109/tnn.2005.844855
10 https://doi.org/10.1113/jphysiol.1948.sp004260
11 https://doi.org/10.1113/jphysiol.1952.sp004764
12 https://doi.org/10.1142/s0218127400000840
13 https://doi.org/10.1209/0295-5075/23/5/011
14 https://doi.org/10.3389/fnins.2011.00134
15 schema:datePublished 2012-10
16 schema:datePublishedReg 2012-10-01
17 schema:description In this paper, we describe an analysis of the nonlinear dynamical phenomenon associated with a silicon neuron. Our silicon neuron in Very Large Scale Integration (VLSI) integrates Hodgkin–Huxley (HH) model formalism, including the membrane voltage dependency of temporal dynamics. Analysis of the bifurcation conditions allow us to identify different regimes in the parameter space that are desirable for biasing our silicon neuron. This approach of studying bifurcations is useful because it is believed that computational properties of neurons are based on the bifurcations exhibited by these dynamical systems in response to some changing stimulus. We describe numerical simulations of the Hopf bifurcation which is characteristic of class 2 excitability in the HH model. We also show experimental measurements of an observed phenomenon in biological neurons and termed excitation block, firing rate and effect of current impulses. Hence, by showing that this silicon neuron has similar bifurcations to a certain class of biological neurons, we can claim that the silicon neuron can also perform similar computations.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf Naf9a7f1af5ed4e20b9a064ea86ad0aa3
22 Nd3ff68734ceb4c1cb3d905a4708419aa
23 sg:journal.1135365
24 schema:name Bifurcation analysis in a silicon neuron
25 schema:pagination 53-58
26 schema:productId N7fa451f794be4b939ce8b4782752c9d0
27 Ncd54c34fa8594f94acddd540e390df13
28 Ndc717527cae046a0b9cf44651c58d468
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024876557
30 https://doi.org/10.1007/s10015-012-0016-6
31 schema:sdDatePublished 2019-04-10T21:37
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N421c20c2320a43a4b996f58c6773d927
34 schema:url http://link.springer.com/10.1007%2Fs10015-012-0016-6
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N0f5f6ceb5b164d2587f297d17255f47d rdf:first sg:person.01200044606.80
39 rdf:rest N749aa9ac1b2344b4a25dbde251d41a59
40 N421c20c2320a43a4b996f58c6773d927 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N749aa9ac1b2344b4a25dbde251d41a59 rdf:first sg:person.01344054500.28
43 rdf:rest Nfb5fc5edf67d4d2788315b82c5917d29
44 N7fa451f794be4b939ce8b4782752c9d0 schema:name dimensions_id
45 schema:value pub.1024876557
46 rdf:type schema:PropertyValue
47 Naf9a7f1af5ed4e20b9a064ea86ad0aa3 schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 Ncd54c34fa8594f94acddd540e390df13 schema:name doi
50 schema:value 10.1007/s10015-012-0016-6
51 rdf:type schema:PropertyValue
52 Nd3ff68734ceb4c1cb3d905a4708419aa schema:volumeNumber 17
53 rdf:type schema:PublicationVolume
54 Ndc717527cae046a0b9cf44651c58d468 schema:name readcube_id
55 schema:value 76833d3f97d64ce88d68c54f6ba949b5a4156a4f8275bff5078813b9faaba9e2
56 rdf:type schema:PropertyValue
57 Nee3f392226e443e8bf71569a64e9cefc rdf:first sg:person.011424452511.09
58 rdf:rest rdf:nil
59 Nfb5fc5edf67d4d2788315b82c5917d29 rdf:first sg:person.0705115506.81
60 rdf:rest Nee3f392226e443e8bf71569a64e9cefc
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
65 schema:name Applied Mathematics
66 rdf:type schema:DefinedTerm
67 sg:grant.3775777 http://pending.schema.org/fundedItem sg:pub.10.1007/s10015-012-0016-6
68 rdf:type schema:MonetaryGrant
69 sg:grant.3787927 http://pending.schema.org/fundedItem sg:pub.10.1007/s10015-012-0016-6
70 rdf:type schema:MonetaryGrant
71 sg:journal.1135365 schema:issn 1433-5298
72 1614-7456
73 schema:name Artificial Life and Robotics
74 rdf:type schema:Periodical
75 sg:person.011424452511.09 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
76 schema:familyName Kohno
77 schema:givenName Takashi
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424452511.09
79 rdf:type schema:Person
80 sg:person.01200044606.80 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
81 schema:familyName Grassia
82 schema:givenName Filippo
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200044606.80
84 rdf:type schema:Person
85 sg:person.01344054500.28 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
86 schema:familyName Lévi
87 schema:givenName Timothée
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344054500.28
89 rdf:type schema:Person
90 sg:person.0705115506.81 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
91 schema:familyName Saïghi
92 schema:givenName Sylvain
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705115506.81
94 rdf:type schema:Person
95 https://doi.org/10.1016/0022-5193(78)90168-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026511479
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/101.526876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061086429
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tbcas.2010.2051224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061522716
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/tbcas.2010.2078816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061522734
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/tbme.2003.820390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526020
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/tnn.2005.844855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716837
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1113/jphysiol.1948.sp004260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025499115
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1113/jphysiol.1952.sp004764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038260469
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1142/s0218127400000840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062953366
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1209/0295-5075/23/5/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064229617
114 rdf:type schema:CreativeWork
115 https://doi.org/10.3389/fnins.2011.00134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005565824
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
118 schema:name Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505, Tokyo, Japan
119 rdf:type schema:Organization
120 https://www.grid.ac/institutes/grid.462974.a schema:alternateName Laboratoire de l'Integration du Materiau au Systeme
121 schema:name Laboratoire d’Intégration du Matériau au Système, UMR CNRS 5218, Université de Bordeaux, 351 Cours de la Libération, 33405, Talence, France
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...