Autonomous acquisition of cooperative behavior based on a theory of mind using parallel genetic network programming View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09-07

AUTHORS

Kenichi Minoya, Takaya Arita, Takashi Omori

ABSTRACT

Understanding others as having intentional states, such as beliefs and desires, is called the theory of mind (ToM). To clarify the mechanism of the autonomous acquisition of cooperative behavior based on the ToM, we constructed a functional model of the brain based on the functional parts combination (FPC) model. This model consists of a set of functional parts and activation signals specifying selective activated patterns, and activated modules can be executed in parallel based on the flow of control tokens. The module network and activation signals can be acquired by the evolutionary computation techniques used in genetic network programming and the genetic algorithm, respectively. We used a hunter task as the task to be solved by agents, and encoded inherent activation signals into the genome as a first step. The result of a computer simulation shows the emergence of the pattern of the functional parts for processing the ToM through evolution characterized by punctuated equilibrium. More... »

PAGES

157

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10015-011-0902-3

DOI

http://dx.doi.org/10.1007/s10015-011-0902-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000639697


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan", 
          "id": "http://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minoya", 
        "givenName": "Kenichi", 
        "id": "sg:person.011417535261.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011417535261.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan", 
          "id": "http://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arita", 
        "givenName": "Takaya", 
        "id": "sg:person.011242741061.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011242741061.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Engineering, Tamagawa University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412905.b", 
          "name": [
            "College of Engineering, Tamagawa University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Omori", 
        "givenName": "Takashi", 
        "id": "sg:person.01263557346.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-09-07", 
    "datePublishedReg": "2011-09-07", 
    "description": "Understanding others as having intentional states, such as beliefs and desires, is called the theory of mind (ToM). To clarify the mechanism of the autonomous acquisition of cooperative behavior based on the ToM, we constructed a functional model of the brain based on the functional parts combination (FPC) model. This model consists of a set of functional parts and activation signals specifying selective activated patterns, and activated modules can be executed in parallel based on the flow of control tokens. The module network and activation signals can be acquired by the evolutionary computation techniques used in genetic network programming and the genetic algorithm, respectively. We used a hunter task as the task to be solved by agents, and encoded inherent activation signals into the genome as a first step. The result of a computer simulation shows the emergence of the pattern of the functional parts for processing the ToM through evolution characterized by punctuated equilibrium.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10015-011-0902-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135365", 
        "issn": [
          "1433-5298", 
          "1614-7456"
        ], 
        "name": "Artificial Life and Robotics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "Genetic Network Programming", 
      "autonomous acquisition", 
      "Network Programming", 
      "evolutionary computation techniques", 
      "computation techniques", 
      "functional parts combination (FPC) model", 
      "genetic algorithm", 
      "module network", 
      "cooperative behavior", 
      "control tokens", 
      "functional parts", 
      "programming", 
      "computer simulation", 
      "functional model", 
      "task", 
      "combination model", 
      "algorithm", 
      "first step", 
      "network", 
      "tokens", 
      "acquisition", 
      "module", 
      "model", 
      "signals", 
      "set", 
      "simulations", 
      "technique", 
      "step", 
      "part", 
      "parallel", 
      "mind", 
      "theory", 
      "patterns", 
      "behavior", 
      "results", 
      "state", 
      "emergence", 
      "intentional states", 
      "agents", 
      "evolution", 
      "desire", 
      "flow", 
      "mechanism", 
      "activation signals", 
      "beliefs", 
      "theory of mind", 
      "punctuated equilibrium", 
      "ToM", 
      "equilibrium", 
      "genome", 
      "brain", 
      "parts combination (FPC) model", 
      "hunter task", 
      "inherent activation signals", 
      "parallel genetic network programming"
    ], 
    "name": "Autonomous acquisition of cooperative behavior based on a theory of mind using parallel genetic network programming", 
    "pagination": "157", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000639697"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10015-011-0902-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10015-011-0902-3", 
      "https://app.dimensions.ai/details/publication/pub.1000639697"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_528.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10015-011-0902-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10015-011-0902-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10015-011-0902-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10015-011-0902-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10015-011-0902-3'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      82 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10015-011-0902-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:09
4 anzsrc-for:0906
5 schema:author N2aa46ee512e34a6c9459bc9db0d1b03c
6 schema:datePublished 2011-09-07
7 schema:datePublishedReg 2011-09-07
8 schema:description Understanding others as having intentional states, such as beliefs and desires, is called the theory of mind (ToM). To clarify the mechanism of the autonomous acquisition of cooperative behavior based on the ToM, we constructed a functional model of the brain based on the functional parts combination (FPC) model. This model consists of a set of functional parts and activation signals specifying selective activated patterns, and activated modules can be executed in parallel based on the flow of control tokens. The module network and activation signals can be acquired by the evolutionary computation techniques used in genetic network programming and the genetic algorithm, respectively. We used a hunter task as the task to be solved by agents, and encoded inherent activation signals into the genome as a first step. The result of a computer simulation shows the emergence of the pattern of the functional parts for processing the ToM through evolution characterized by punctuated equilibrium.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N64cfc66461c64bb1b51788722a6fd091
13 Nf4e65092d394492e81f93063b7e3e096
14 sg:journal.1135365
15 schema:keywords Genetic Network Programming
16 Network Programming
17 ToM
18 acquisition
19 activation signals
20 agents
21 algorithm
22 autonomous acquisition
23 behavior
24 beliefs
25 brain
26 combination model
27 computation techniques
28 computer simulation
29 control tokens
30 cooperative behavior
31 desire
32 emergence
33 equilibrium
34 evolution
35 evolutionary computation techniques
36 first step
37 flow
38 functional model
39 functional parts
40 functional parts combination (FPC) model
41 genetic algorithm
42 genome
43 hunter task
44 inherent activation signals
45 intentional states
46 mechanism
47 mind
48 model
49 module
50 module network
51 network
52 parallel
53 parallel genetic network programming
54 part
55 parts combination (FPC) model
56 patterns
57 programming
58 punctuated equilibrium
59 results
60 set
61 signals
62 simulations
63 state
64 step
65 task
66 technique
67 theory
68 theory of mind
69 tokens
70 schema:name Autonomous acquisition of cooperative behavior based on a theory of mind using parallel genetic network programming
71 schema:pagination 157
72 schema:productId N6ff75ce97d4a400abd7a4527c3a77c3a
73 Nebe3cda1a59f49969f26f54e2da854ca
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000639697
75 https://doi.org/10.1007/s10015-011-0902-3
76 schema:sdDatePublished 2022-01-01T18:24
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Na45bcddc5ef040df978e1747488cc8c4
79 schema:url https://doi.org/10.1007/s10015-011-0902-3
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N2aa46ee512e34a6c9459bc9db0d1b03c rdf:first sg:person.011417535261.43
84 rdf:rest Nd8fa1e29f05c427fa1a22754af669c24
85 N64cfc66461c64bb1b51788722a6fd091 schema:volumeNumber 16
86 rdf:type schema:PublicationVolume
87 N6ff75ce97d4a400abd7a4527c3a77c3a schema:name dimensions_id
88 schema:value pub.1000639697
89 rdf:type schema:PropertyValue
90 Na45bcddc5ef040df978e1747488cc8c4 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nd74d489c4ddc449ca2b49a4ed23aabca rdf:first sg:person.01263557346.07
93 rdf:rest rdf:nil
94 Nd8fa1e29f05c427fa1a22754af669c24 rdf:first sg:person.011242741061.85
95 rdf:rest Nd74d489c4ddc449ca2b49a4ed23aabca
96 Nebe3cda1a59f49969f26f54e2da854ca schema:name doi
97 schema:value 10.1007/s10015-011-0902-3
98 rdf:type schema:PropertyValue
99 Nf4e65092d394492e81f93063b7e3e096 schema:issueNumber 2
100 rdf:type schema:PublicationIssue
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
105 schema:name Artificial Intelligence and Image Processing
106 rdf:type schema:DefinedTerm
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
111 schema:name Electrical and Electronic Engineering
112 rdf:type schema:DefinedTerm
113 sg:journal.1135365 schema:issn 1433-5298
114 1614-7456
115 schema:name Artificial Life and Robotics
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.011242741061.85 schema:affiliation grid-institutes:grid.27476.30
119 schema:familyName Arita
120 schema:givenName Takaya
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011242741061.85
122 rdf:type schema:Person
123 sg:person.011417535261.43 schema:affiliation grid-institutes:grid.27476.30
124 schema:familyName Minoya
125 schema:givenName Kenichi
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011417535261.43
127 rdf:type schema:Person
128 sg:person.01263557346.07 schema:affiliation grid-institutes:grid.412905.b
129 schema:familyName Omori
130 schema:givenName Takashi
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07
132 rdf:type schema:Person
133 grid-institutes:grid.27476.30 schema:alternateName Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan
134 schema:name Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan
135 rdf:type schema:Organization
136 grid-institutes:grid.412905.b schema:alternateName College of Engineering, Tamagawa University, Tokyo, Japan
137 schema:name College of Engineering, Tamagawa University, Tokyo, Japan
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...