The Grand Four: Affine Invariant Globalizations of Newton’s Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Peter Deuflhard

ABSTRACT

This paper gives a concise synopsis and some new insights concerning four affine invariant globalizations of the local Newton method. The invariance classes include affine covariance, affine contravariance, affine conjugacy, and affine similarity. In view of algorithmic robustness, each of these classes of algorithms is particularly suitable for some corresponding problem class. More... »

PAGES

1-17

Journal

TITLE

Vietnam Journal of Mathematics

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10013-018-0301-3

DOI

http://dx.doi.org/10.1007/s10013-018-0301-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106291484


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zuse Institute Berlin", 
          "id": "https://www.grid.ac/institutes/grid.425649.8", 
          "name": [
            "Zuse Institute Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deuflhard", 
        "givenName": "Peter", 
        "id": "sg:person.0631627001.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631627001.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01406969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001030131", 
          "https://doi.org/10.1007/bf01406969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01406969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001030131", 
          "https://doi.org/10.1007/bf01406969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0899-8248(90)90014-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001759220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-58734-4_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006258910", 
          "https://doi.org/10.1007/978-3-642-58734-4_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-68220-9_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006513370", 
          "https://doi.org/10.1007/978-3-642-68220-9_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01399549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029466979", 
          "https://doi.org/10.1007/bf01399549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01399549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029466979", 
          "https://doi.org/10.1007/bf01399549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01395950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037703060", 
          "https://doi.org/10.1007/bf01395950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0716001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0724059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062853286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036142996304796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098553014"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "This paper gives a concise synopsis and some new insights concerning four affine invariant globalizations of the local Newton method. The invariance classes include affine covariance, affine contravariance, affine conjugacy, and affine similarity. In view of algorithmic robustness, each of these classes of algorithms is particularly suitable for some corresponding problem class.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10013-018-0301-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136660", 
        "issn": [
          "2305-221X", 
          "2305-2228"
        ], 
        "name": "Vietnam Journal of Mathematics", 
        "type": "Periodical"
      }
    ], 
    "name": "The Grand Four: Affine Invariant Globalizations of Newton\u2019s Method", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "deca0ac705dea249818818026613c722ab777dc7aec17823a8251fba70ec79fb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10013-018-0301-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106291484"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10013-018-0301-3", 
      "https://app.dimensions.ai/details/publication/pub.1106291484"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000485.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10013-018-0301-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10013-018-0301-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10013-018-0301-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10013-018-0301-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10013-018-0301-3'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      21 PREDICATES      35 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10013-018-0301-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2bf4146498b342cbb8557a0dcbae319c
4 schema:citation sg:pub.10.1007/978-3-642-58734-4_4
5 sg:pub.10.1007/978-3-642-68220-9_8
6 sg:pub.10.1007/bf01395950
7 sg:pub.10.1007/bf01399549
8 sg:pub.10.1007/bf01406969
9 https://doi.org/10.1016/0899-8248(90)90014-2
10 https://doi.org/10.1137/0716001
11 https://doi.org/10.1137/0724059
12 https://doi.org/10.1137/1.9781611970944
13 https://doi.org/10.1137/s0036142996304796
14 schema:datePublished 2018-12
15 schema:datePublishedReg 2018-12-01
16 schema:description This paper gives a concise synopsis and some new insights concerning four affine invariant globalizations of the local Newton method. The invariance classes include affine covariance, affine contravariance, affine conjugacy, and affine similarity. In view of algorithmic robustness, each of these classes of algorithms is particularly suitable for some corresponding problem class.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf sg:journal.1136660
21 schema:name The Grand Four: Affine Invariant Globalizations of Newton’s Method
22 schema:pagination 1-17
23 schema:productId N0275df23773040d6bb545913f1383e00
24 N7d163fa935f14351ba7291c1cd55a891
25 Nd53f23b6305b4f958a5a0f3dddfa88ce
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106291484
27 https://doi.org/10.1007/s10013-018-0301-3
28 schema:sdDatePublished 2019-04-10T17:25
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Naebd69fcd93e4f5e8c67d30558ef49b8
31 schema:url http://link.springer.com/10.1007/s10013-018-0301-3
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0275df23773040d6bb545913f1383e00 schema:name readcube_id
36 schema:value deca0ac705dea249818818026613c722ab777dc7aec17823a8251fba70ec79fb
37 rdf:type schema:PropertyValue
38 N2bf4146498b342cbb8557a0dcbae319c rdf:first sg:person.0631627001.13
39 rdf:rest rdf:nil
40 N7d163fa935f14351ba7291c1cd55a891 schema:name doi
41 schema:value 10.1007/s10013-018-0301-3
42 rdf:type schema:PropertyValue
43 Naebd69fcd93e4f5e8c67d30558ef49b8 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Nd53f23b6305b4f958a5a0f3dddfa88ce schema:name dimensions_id
46 schema:value pub.1106291484
47 rdf:type schema:PropertyValue
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
52 schema:name Pure Mathematics
53 rdf:type schema:DefinedTerm
54 sg:journal.1136660 schema:issn 2305-221X
55 2305-2228
56 schema:name Vietnam Journal of Mathematics
57 rdf:type schema:Periodical
58 sg:person.0631627001.13 schema:affiliation https://www.grid.ac/institutes/grid.425649.8
59 schema:familyName Deuflhard
60 schema:givenName Peter
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631627001.13
62 rdf:type schema:Person
63 sg:pub.10.1007/978-3-642-58734-4_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006258910
64 https://doi.org/10.1007/978-3-642-58734-4_4
65 rdf:type schema:CreativeWork
66 sg:pub.10.1007/978-3-642-68220-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006513370
67 https://doi.org/10.1007/978-3-642-68220-9_8
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/bf01395950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037703060
70 https://doi.org/10.1007/bf01395950
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf01399549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029466979
73 https://doi.org/10.1007/bf01399549
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01406969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001030131
76 https://doi.org/10.1007/bf01406969
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/0899-8248(90)90014-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001759220
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1137/0716001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852562
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1137/0724059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062853286
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1137/1.9781611970944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098553014
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1137/s0036142996304796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877375
87 rdf:type schema:CreativeWork
88 https://www.grid.ac/institutes/grid.425649.8 schema:alternateName Zuse Institute Berlin
89 schema:name Zuse Institute Berlin, Berlin, Germany
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...