Improved electrochemical properties of chromium substituted in LiCr1 − xNixO2 cathode materials for rechargeable lithium-ion batteries View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-07-10

AUTHORS

P. Mohan, K. Arunsunai Kumar, G. Paruthimal Kalaignan, V. S. Muralidharan

ABSTRACT

Pristine- and chromium-substituted LiNiO2 nanoparticles were synthesized by sol-gel method using nitrate precursor at 800 °C for 12 h. Physical properties of the synthesized product were analyzed using Fourier transform infrared, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive analysis X-ray. XRD studies revealed a well-defined layer structure and a linear variation of lattice parameters with the addition of chromium and no impurities. Surface morphology and particle size of synthesized materials were changed with chromium addition using SEM and TEM analyses. Assembled lithium-ion cells were evaluated for charge/discharge studies at different rates, cyclic voltammetry, and electrochemical impedance spectra. The initial discharge capacity of LiNiO2 cathode material was found to be 168 mA hg−1; however, discharge capacity increased in chromium substitution. Electrochemical impedance spectroscopy revealed that LiCr0.10Ni0.90O2 could enhance charge transfer resistance upon cycling. The substitution of Ni with chromium, LiCr0.10Ni0.90O2, had better cycle life, low irreversible capacity, and excellent electrochemical performance. More... »

PAGES

3695-3702

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10008-012-1808-2

DOI

http://dx.doi.org/10.1007/s10008-012-1808-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052583753


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Advanced Lithium Battery Research Lab, Department of Industrial Chemistry, Alagappa University, 630003, Karaikudi, India", 
          "id": "http://www.grid.ac/institutes/grid.411312.4", 
          "name": [
            "Advanced Lithium Battery Research Lab, Department of Industrial Chemistry, Alagappa University, 630003, Karaikudi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohan", 
        "givenName": "P.", 
        "id": "sg:person.0604411742.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604411742.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced Lithium Battery Research Lab, Department of Industrial Chemistry, Alagappa University, 630003, Karaikudi, India", 
          "id": "http://www.grid.ac/institutes/grid.411312.4", 
          "name": [
            "Advanced Lithium Battery Research Lab, Department of Industrial Chemistry, Alagappa University, 630003, Karaikudi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "K. Arunsunai", 
        "id": "sg:person.012675156715.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675156715.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced Lithium Battery Research Lab, Department of Industrial Chemistry, Alagappa University, 630003, Karaikudi, India", 
          "id": "http://www.grid.ac/institutes/grid.411312.4", 
          "name": [
            "Advanced Lithium Battery Research Lab, Department of Industrial Chemistry, Alagappa University, 630003, Karaikudi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalaignan", 
        "givenName": "G. Paruthimal", 
        "id": "sg:person.0576510074.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576510074.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced Lithium Battery Research Lab, Department of Industrial Chemistry, Alagappa University, 630003, Karaikudi, India", 
          "id": "http://www.grid.ac/institutes/grid.411312.4", 
          "name": [
            "Advanced Lithium Battery Research Lab, Department of Industrial Chemistry, Alagappa University, 630003, Karaikudi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muralidharan", 
        "givenName": "V. S.", 
        "id": "sg:person.011753121375.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011753121375.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10008-002-0287-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013238054", 
          "https://doi.org/10.1007/s10008-002-0287-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12034-008-0069-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007413863", 
          "https://doi.org/10.1007/s12034-008-0069-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028300488", 
          "https://doi.org/10.1038/35104644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10800-005-9012-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008880937", 
          "https://doi.org/10.1007/s10800-005-9012-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-07-10", 
    "datePublishedReg": "2012-07-10", 
    "description": "Pristine- and chromium-substituted LiNiO2 nanoparticles were synthesized by sol-gel method using nitrate precursor at 800\u00a0\u00b0C for 12\u00a0h. Physical properties of the synthesized product were analyzed using Fourier transform infrared, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive analysis X-ray. XRD studies revealed a well-defined layer structure and a linear variation of lattice parameters with the addition of chromium and no impurities. Surface morphology and particle size of synthesized materials were changed with chromium addition using SEM and TEM analyses. Assembled lithium-ion cells were evaluated for charge/discharge studies at different rates, cyclic voltammetry, and electrochemical impedance spectra. The initial discharge capacity of LiNiO2 cathode material was found to be 168\u00a0mA hg\u22121; however, discharge capacity increased in chromium substitution. Electrochemical impedance spectroscopy revealed that LiCr0.10Ni0.90O2 could enhance charge transfer resistance upon cycling. The substitution of Ni with chromium, LiCr0.10Ni0.90O2, had better cycle life, low irreversible capacity, and excellent electrochemical performance.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10008-012-1808-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041850", 
        "issn": [
          "1432-8488", 
          "1433-0768"
        ], 
        "name": "Journal of Solid State Electrochemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "cathode material", 
      "discharge capacity", 
      "rechargeable lithium-ion batteries", 
      "transmission electron microscopy", 
      "charge/discharge studies", 
      "sol\u2013gel method", 
      "lithium-ion batteries", 
      "LiNiO2 cathode material", 
      "excellent electrochemical performance", 
      "initial discharge capacity", 
      "charge transfer resistance", 
      "electrochemical impedance spectroscopy", 
      "electrochemical impedance spectra", 
      "low irreversible capacity", 
      "good cycle life", 
      "energy dispersive analysis X", 
      "electron microscopy", 
      "lithium-ion cells", 
      "cyclic voltammetry", 
      "electrochemical properties", 
      "electrochemical performance", 
      "chromium substitution", 
      "irreversible capacity", 
      "impedance spectroscopy", 
      "cycle life", 
      "nitrate precursors", 
      "transfer resistance", 
      "Fourier transform", 
      "ray diffraction", 
      "XRD studies", 
      "analysis X", 
      "impedance spectra", 
      "discharge studies", 
      "surface morphology", 
      "TEM analysis", 
      "substitution of Ni", 
      "particle size", 
      "layer structure", 
      "addition of chromium", 
      "chromium", 
      "lattice parameters", 
      "physical properties", 
      "chromium addition", 
      "microscopy", 
      "voltammetry", 
      "materials", 
      "nanoparticles", 
      "spectroscopy", 
      "properties", 
      "diffraction", 
      "pristine", 
      "linear variation", 
      "SEM", 
      "substitution", 
      "batteries", 
      "transform", 
      "precursors", 
      "impurities", 
      "Ni", 
      "spectra", 
      "capacity", 
      "morphology", 
      "cycling", 
      "products", 
      "structure", 
      "addition", 
      "different rates", 
      "size", 
      "rays", 
      "method", 
      "parameters", 
      "performance", 
      "study", 
      "resistance", 
      "analysis", 
      "rate", 
      "variation", 
      "cells", 
      "life", 
      "chromium-substituted LiNiO2 nanoparticles", 
      "LiNiO2 nanoparticles", 
      "dispersive analysis X", 
      "LiCr1", 
      "xNixO2 cathode materials"
    ], 
    "name": "Improved electrochemical properties of chromium substituted in LiCr1 \u2212 xNixO2 cathode materials for rechargeable lithium-ion batteries", 
    "pagination": "3695-3702", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052583753"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10008-012-1808-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10008-012-1808-2", 
      "https://app.dimensions.ai/details/publication/pub.1052583753"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10008-012-1808-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10008-012-1808-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10008-012-1808-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10008-012-1808-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10008-012-1808-2'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      22 PREDICATES      113 URIs      101 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10008-012-1808-2 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nd2992b97b7b84c82b39fef59d35f00bb
4 schema:citation sg:pub.10.1007/s10008-002-0287-2
5 sg:pub.10.1007/s10800-005-9012-z
6 sg:pub.10.1007/s12034-008-0069-2
7 sg:pub.10.1038/35104644
8 schema:datePublished 2012-07-10
9 schema:datePublishedReg 2012-07-10
10 schema:description Pristine- and chromium-substituted LiNiO2 nanoparticles were synthesized by sol-gel method using nitrate precursor at 800 °C for 12 h. Physical properties of the synthesized product were analyzed using Fourier transform infrared, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive analysis X-ray. XRD studies revealed a well-defined layer structure and a linear variation of lattice parameters with the addition of chromium and no impurities. Surface morphology and particle size of synthesized materials were changed with chromium addition using SEM and TEM analyses. Assembled lithium-ion cells were evaluated for charge/discharge studies at different rates, cyclic voltammetry, and electrochemical impedance spectra. The initial discharge capacity of LiNiO2 cathode material was found to be 168 mA hg−1; however, discharge capacity increased in chromium substitution. Electrochemical impedance spectroscopy revealed that LiCr0.10Ni0.90O2 could enhance charge transfer resistance upon cycling. The substitution of Ni with chromium, LiCr0.10Ni0.90O2, had better cycle life, low irreversible capacity, and excellent electrochemical performance.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N583fe877793a4cde81496e8a22a80c68
15 Nbef2fd2b80c440c3a2a138490ae5b182
16 sg:journal.1041850
17 schema:keywords Fourier transform
18 LiCr1
19 LiNiO2 cathode material
20 LiNiO2 nanoparticles
21 Ni
22 SEM
23 TEM analysis
24 XRD studies
25 addition
26 addition of chromium
27 analysis
28 analysis X
29 batteries
30 capacity
31 cathode material
32 cells
33 charge transfer resistance
34 charge/discharge studies
35 chromium
36 chromium addition
37 chromium substitution
38 chromium-substituted LiNiO2 nanoparticles
39 cycle life
40 cyclic voltammetry
41 cycling
42 different rates
43 diffraction
44 discharge capacity
45 discharge studies
46 dispersive analysis X
47 electrochemical impedance spectra
48 electrochemical impedance spectroscopy
49 electrochemical performance
50 electrochemical properties
51 electron microscopy
52 energy dispersive analysis X
53 excellent electrochemical performance
54 good cycle life
55 impedance spectra
56 impedance spectroscopy
57 impurities
58 initial discharge capacity
59 irreversible capacity
60 lattice parameters
61 layer structure
62 life
63 linear variation
64 lithium-ion batteries
65 lithium-ion cells
66 low irreversible capacity
67 materials
68 method
69 microscopy
70 morphology
71 nanoparticles
72 nitrate precursors
73 parameters
74 particle size
75 performance
76 physical properties
77 precursors
78 pristine
79 products
80 properties
81 rate
82 ray diffraction
83 rays
84 rechargeable lithium-ion batteries
85 resistance
86 size
87 sol–gel method
88 spectra
89 spectroscopy
90 structure
91 study
92 substitution
93 substitution of Ni
94 surface morphology
95 transfer resistance
96 transform
97 transmission electron microscopy
98 variation
99 voltammetry
100 xNixO2 cathode materials
101 schema:name Improved electrochemical properties of chromium substituted in LiCr1 − xNixO2 cathode materials for rechargeable lithium-ion batteries
102 schema:pagination 3695-3702
103 schema:productId N12e38a9b32f94bb4a28980d348ce5372
104 Nfdd862e97a364530b472e4aa42bafd2a
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052583753
106 https://doi.org/10.1007/s10008-012-1808-2
107 schema:sdDatePublished 2022-01-01T18:28
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher Nd268d7f684f64eeabe878658a940f094
110 schema:url https://doi.org/10.1007/s10008-012-1808-2
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N12e38a9b32f94bb4a28980d348ce5372 schema:name doi
115 schema:value 10.1007/s10008-012-1808-2
116 rdf:type schema:PropertyValue
117 N583fe877793a4cde81496e8a22a80c68 schema:issueNumber 12
118 rdf:type schema:PublicationIssue
119 N620bd6208f0e484dbaf6045cae0d03bf rdf:first sg:person.0576510074.57
120 rdf:rest N6fcd6c2f790748b38fcded513513ad6d
121 N6b3c3b97c6a84cd9b5ef84d2721ce75c rdf:first sg:person.012675156715.66
122 rdf:rest N620bd6208f0e484dbaf6045cae0d03bf
123 N6fcd6c2f790748b38fcded513513ad6d rdf:first sg:person.011753121375.05
124 rdf:rest rdf:nil
125 Nbef2fd2b80c440c3a2a138490ae5b182 schema:volumeNumber 16
126 rdf:type schema:PublicationVolume
127 Nd268d7f684f64eeabe878658a940f094 schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 Nd2992b97b7b84c82b39fef59d35f00bb rdf:first sg:person.0604411742.19
130 rdf:rest N6b3c3b97c6a84cd9b5ef84d2721ce75c
131 Nfdd862e97a364530b472e4aa42bafd2a schema:name dimensions_id
132 schema:value pub.1052583753
133 rdf:type schema:PropertyValue
134 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
135 schema:name Chemical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
138 schema:name Physical Chemistry (incl. Structural)
139 rdf:type schema:DefinedTerm
140 sg:journal.1041850 schema:issn 1432-8488
141 1433-0768
142 schema:name Journal of Solid State Electrochemistry
143 schema:publisher Springer Nature
144 rdf:type schema:Periodical
145 sg:person.011753121375.05 schema:affiliation grid-institutes:grid.411312.4
146 schema:familyName Muralidharan
147 schema:givenName V. S.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011753121375.05
149 rdf:type schema:Person
150 sg:person.012675156715.66 schema:affiliation grid-institutes:grid.411312.4
151 schema:familyName Kumar
152 schema:givenName K. Arunsunai
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675156715.66
154 rdf:type schema:Person
155 sg:person.0576510074.57 schema:affiliation grid-institutes:grid.411312.4
156 schema:familyName Kalaignan
157 schema:givenName G. Paruthimal
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576510074.57
159 rdf:type schema:Person
160 sg:person.0604411742.19 schema:affiliation grid-institutes:grid.411312.4
161 schema:familyName Mohan
162 schema:givenName P.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604411742.19
164 rdf:type schema:Person
165 sg:pub.10.1007/s10008-002-0287-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013238054
166 https://doi.org/10.1007/s10008-002-0287-2
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s10800-005-9012-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1008880937
169 https://doi.org/10.1007/s10800-005-9012-z
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s12034-008-0069-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007413863
172 https://doi.org/10.1007/s12034-008-0069-2
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/35104644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028300488
175 https://doi.org/10.1038/35104644
176 rdf:type schema:CreativeWork
177 grid-institutes:grid.411312.4 schema:alternateName Advanced Lithium Battery Research Lab, Department of Industrial Chemistry, Alagappa University, 630003, Karaikudi, India
178 schema:name Advanced Lithium Battery Research Lab, Department of Industrial Chemistry, Alagappa University, 630003, Karaikudi, India
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...