Kinetics of oxygen reduction on porous mixed conducting (La0.85Sr0.15)0.9MnO3 electrode by ac-impedance analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-01

AUTHORS

Ju-Sik Kim, Su-Il Pyun, Jong-Won Lee, Rak-Hyun Song

ABSTRACT

The oxygen reduction reaction on mixed conducting (La0.85Sr0.15)0.9MnO3 electrodes with various porosities was investigated by analysis of the ac-impedance spectra. To attain a mixed electronic/ionic conducting state of (La0.85Sr0.15)0.9MnO3 with high oxygen vacancy concentration, the electrode specimen was purposely subjected to cathodic polarisation. The ac-impedance spectrum clearly showed a straight line inclined at a constant angle of 45° to the real axis in the high-frequency range, followed by an arc in the low-frequency range, i.e. it exhibited the Gerischer behaviour. This strongly indicates that oxygen reduction on the mixed conducting electrode involves diffusion of oxygen vacancy through the electrode coupled with the electron exchange reaction between oxygen vacancies and gaseous oxygen (charge transfer reaction) at the electrode/gas interface. It was further recognised that the two-dimensional electrochemical active region for oxygen reduction extends from the origin of the three-phase boundaries (TPBs) among electrode, electrolyte and gas into the electrode/gas interface segments, which is on average approximately 0.7 to 1.1 μm in length below the electrode porosity 0.12. Based from the fact that the ac-impedance spectrum deviated more significantly from the Gerischer behaviour with increasing electrode porosity above 0.22, it is proposed that due to the increased length of TPBs, the rate of the overall oxygen reduction on the highly porous electrode is mainly determined by the charge transfer reaction at the TPBs, and the subsequent diffusion of oxygen vacancy occurs facilely through the electrode. More... »

PAGES

117-125

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10008-005-0080-0

DOI

http://dx.doi.org/10.1007/s10008-005-0080-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039041011


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.37172.30", 
          "name": [
            "Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-Dong, Yuseong-Gu, 305-701, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Ju-Sik", 
        "id": "sg:person.010015331253.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010015331253.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.37172.30", 
          "name": [
            "Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-Dong, Yuseong-Gu, 305-701, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pyun", 
        "givenName": "Su-Il", 
        "id": "sg:person.07717021573.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07717021573.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Advanced Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.37172.30", 
          "name": [
            "Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-Dong, Yuseong-Gu, 305-701, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jong-Won", 
        "id": "sg:person.01111262014.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111262014.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Energy Research", 
          "id": "https://www.grid.ac/institutes/grid.418979.a", 
          "name": [
            "Korea Institute of Energy Research, 71-2 Jang-Dong, Yuseong-Gu, 305-343, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Rak-Hyun", 
        "id": "sg:person.01137273517.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137273517.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0013-4686(94)00361-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000312223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(96)00287-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001770989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(98)00295-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006038099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1837375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006764786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b105764m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009092133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1838589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014568453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(97)00499-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015196842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2055071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018928531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(94)90154-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019932489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(94)90154-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019932489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(99)00237-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022167444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4686(93)80334-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023753389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(87)90149-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029500040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(87)90149-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029500040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(92)90166-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029837506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(92)90166-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029837506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(03)00436-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029913262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(03)00436-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029913262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(02)00235-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030383065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1837252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031322760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1151-2916.1998.tb02297.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031891003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(92)90435-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041005746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(92)90435-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041005746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-0321(02)00014-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041366738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(96)00281-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041391208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(02)00185-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042464782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(98)00179-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042511794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(98)00179-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042511794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(01)00997-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045423682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(89)90306-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050376637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(89)90306-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050376637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1838271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053246354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-044489568-4/50006-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053655072"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "The oxygen reduction reaction on mixed conducting (La0.85Sr0.15)0.9MnO3 electrodes with various porosities was investigated by analysis of the ac-impedance spectra. To attain a mixed electronic/ionic conducting state of (La0.85Sr0.15)0.9MnO3 with high oxygen vacancy concentration, the electrode specimen was purposely subjected to cathodic polarisation. The ac-impedance spectrum clearly showed a straight line inclined at a constant angle of 45\u00b0 to the real axis in the high-frequency range, followed by an arc in the low-frequency range, i.e. it exhibited the Gerischer behaviour. This strongly indicates that oxygen reduction on the mixed conducting electrode involves diffusion of oxygen vacancy through the electrode coupled with the electron exchange reaction between oxygen vacancies and gaseous oxygen (charge transfer reaction) at the electrode/gas interface. It was further recognised that the two-dimensional electrochemical active region for oxygen reduction extends from the origin of the three-phase boundaries (TPBs) among electrode, electrolyte and gas into the electrode/gas interface segments, which is on average approximately 0.7 to 1.1 \u03bcm in length below the electrode porosity 0.12. Based from the fact that the ac-impedance spectrum deviated more significantly from the Gerischer behaviour with increasing electrode porosity above 0.22, it is proposed that due to the increased length of TPBs, the rate of the overall oxygen reduction on the highly porous electrode is mainly determined by the charge transfer reaction at the TPBs, and the subsequent diffusion of oxygen vacancy occurs facilely through the electrode.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10008-005-0080-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041850", 
        "issn": [
          "1432-8488", 
          "1433-0768"
        ], 
        "name": "Journal of Solid State Electrochemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Kinetics of oxygen reduction on porous mixed conducting (La0.85Sr0.15)0.9MnO3 electrode by ac-impedance analysis", 
    "pagination": "117-125", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b9f893a478b4039d7b120d6c6a58dd16cd11eddc9feb7905b37b8f32b379492a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10008-005-0080-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039041011"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10008-005-0080-0", 
      "https://app.dimensions.ai/details/publication/pub.1039041011"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70049_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10008-005-0080-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10008-005-0080-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10008-005-0080-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10008-005-0080-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10008-005-0080-0'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10008-005-0080-0 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N90c1f1d701e64a9ba9a227d000cec69c
4 schema:citation https://doi.org/10.1016/0013-4686(93)80334-v
5 https://doi.org/10.1016/0013-4686(94)00361-4
6 https://doi.org/10.1016/0167-2738(87)90149-4
7 https://doi.org/10.1016/0167-2738(89)90306-8
8 https://doi.org/10.1016/0167-2738(92)90166-m
9 https://doi.org/10.1016/0167-2738(92)90435-r
10 https://doi.org/10.1016/0167-2738(94)90154-6
11 https://doi.org/10.1016/0167-2738(96)00281-0
12 https://doi.org/10.1016/0167-2738(96)00287-1
13 https://doi.org/10.1016/b978-044489568-4/50006-2
14 https://doi.org/10.1016/s0167-2738(01)00997-3
15 https://doi.org/10.1016/s0167-2738(02)00185-6
16 https://doi.org/10.1016/s0167-2738(02)00235-7
17 https://doi.org/10.1016/s0167-2738(97)00499-2
18 https://doi.org/10.1016/s0167-2738(98)00179-9
19 https://doi.org/10.1016/s0167-2738(98)00295-1
20 https://doi.org/10.1016/s0167-2738(99)00237-4
21 https://doi.org/10.1016/s0378-7753(03)00436-1
22 https://doi.org/10.1016/s1364-0321(02)00014-x
23 https://doi.org/10.1039/b105764m
24 https://doi.org/10.1111/j.1151-2916.1998.tb02297.x
25 https://doi.org/10.1149/1.1837252
26 https://doi.org/10.1149/1.1837375
27 https://doi.org/10.1149/1.1838271
28 https://doi.org/10.1149/1.1838589
29 https://doi.org/10.1149/1.2055071
30 schema:datePublished 2007-01
31 schema:datePublishedReg 2007-01-01
32 schema:description The oxygen reduction reaction on mixed conducting (La0.85Sr0.15)0.9MnO3 electrodes with various porosities was investigated by analysis of the ac-impedance spectra. To attain a mixed electronic/ionic conducting state of (La0.85Sr0.15)0.9MnO3 with high oxygen vacancy concentration, the electrode specimen was purposely subjected to cathodic polarisation. The ac-impedance spectrum clearly showed a straight line inclined at a constant angle of 45° to the real axis in the high-frequency range, followed by an arc in the low-frequency range, i.e. it exhibited the Gerischer behaviour. This strongly indicates that oxygen reduction on the mixed conducting electrode involves diffusion of oxygen vacancy through the electrode coupled with the electron exchange reaction between oxygen vacancies and gaseous oxygen (charge transfer reaction) at the electrode/gas interface. It was further recognised that the two-dimensional electrochemical active region for oxygen reduction extends from the origin of the three-phase boundaries (TPBs) among electrode, electrolyte and gas into the electrode/gas interface segments, which is on average approximately 0.7 to 1.1 μm in length below the electrode porosity 0.12. Based from the fact that the ac-impedance spectrum deviated more significantly from the Gerischer behaviour with increasing electrode porosity above 0.22, it is proposed that due to the increased length of TPBs, the rate of the overall oxygen reduction on the highly porous electrode is mainly determined by the charge transfer reaction at the TPBs, and the subsequent diffusion of oxygen vacancy occurs facilely through the electrode.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N74848e7b64c348aeae31a7cb47e2bfa5
37 Nd19b075d851648c2b372973313682fe6
38 sg:journal.1041850
39 schema:name Kinetics of oxygen reduction on porous mixed conducting (La0.85Sr0.15)0.9MnO3 electrode by ac-impedance analysis
40 schema:pagination 117-125
41 schema:productId N70ee813f4d554e5c8441d352d6a2e313
42 Nab8f765c958149a5a300ba05ee4dd4b2
43 Nc76c7cfc07e64d4987a7a70ec27d59df
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039041011
45 https://doi.org/10.1007/s10008-005-0080-0
46 schema:sdDatePublished 2019-04-11T12:40
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N4d10d7c6891744eb96682be1f20b7cd1
49 schema:url http://link.springer.com/10.1007%2Fs10008-005-0080-0
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N1399b39b3e8a4f25a5ab8c4bbb645a60 rdf:first sg:person.01111262014.41
54 rdf:rest N78c9e1c1e3324be59f1b8123718967b6
55 N36365b40bc8a478992385cd1da32021e rdf:first sg:person.07717021573.71
56 rdf:rest N1399b39b3e8a4f25a5ab8c4bbb645a60
57 N4d10d7c6891744eb96682be1f20b7cd1 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N70ee813f4d554e5c8441d352d6a2e313 schema:name dimensions_id
60 schema:value pub.1039041011
61 rdf:type schema:PropertyValue
62 N74848e7b64c348aeae31a7cb47e2bfa5 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N78c9e1c1e3324be59f1b8123718967b6 rdf:first sg:person.01137273517.62
65 rdf:rest rdf:nil
66 N90c1f1d701e64a9ba9a227d000cec69c rdf:first sg:person.010015331253.90
67 rdf:rest N36365b40bc8a478992385cd1da32021e
68 Nab8f765c958149a5a300ba05ee4dd4b2 schema:name doi
69 schema:value 10.1007/s10008-005-0080-0
70 rdf:type schema:PropertyValue
71 Nc76c7cfc07e64d4987a7a70ec27d59df schema:name readcube_id
72 schema:value b9f893a478b4039d7b120d6c6a58dd16cd11eddc9feb7905b37b8f32b379492a
73 rdf:type schema:PropertyValue
74 Nd19b075d851648c2b372973313682fe6 schema:volumeNumber 11
75 rdf:type schema:PublicationVolume
76 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
77 schema:name Chemical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
80 schema:name Physical Chemistry (incl. Structural)
81 rdf:type schema:DefinedTerm
82 sg:journal.1041850 schema:issn 1432-8488
83 1433-0768
84 schema:name Journal of Solid State Electrochemistry
85 rdf:type schema:Periodical
86 sg:person.010015331253.90 schema:affiliation https://www.grid.ac/institutes/grid.37172.30
87 schema:familyName Kim
88 schema:givenName Ju-Sik
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010015331253.90
90 rdf:type schema:Person
91 sg:person.01111262014.41 schema:affiliation https://www.grid.ac/institutes/grid.37172.30
92 schema:familyName Lee
93 schema:givenName Jong-Won
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111262014.41
95 rdf:type schema:Person
96 sg:person.01137273517.62 schema:affiliation https://www.grid.ac/institutes/grid.418979.a
97 schema:familyName Song
98 schema:givenName Rak-Hyun
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137273517.62
100 rdf:type schema:Person
101 sg:person.07717021573.71 schema:affiliation https://www.grid.ac/institutes/grid.37172.30
102 schema:familyName Pyun
103 schema:givenName Su-Il
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07717021573.71
105 rdf:type schema:Person
106 https://doi.org/10.1016/0013-4686(93)80334-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1023753389
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0013-4686(94)00361-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000312223
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0167-2738(87)90149-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029500040
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0167-2738(89)90306-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050376637
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0167-2738(92)90166-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1029837506
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0167-2738(92)90435-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1041005746
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0167-2738(94)90154-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019932489
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0167-2738(96)00281-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041391208
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0167-2738(96)00287-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001770989
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/b978-044489568-4/50006-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053655072
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0167-2738(01)00997-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045423682
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0167-2738(02)00185-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042464782
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0167-2738(02)00235-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030383065
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0167-2738(97)00499-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015196842
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0167-2738(98)00179-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042511794
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0167-2738(98)00295-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006038099
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0167-2738(99)00237-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022167444
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0378-7753(03)00436-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029913262
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s1364-0321(02)00014-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041366738
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1039/b105764m schema:sameAs https://app.dimensions.ai/details/publication/pub.1009092133
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1111/j.1151-2916.1998.tb02297.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031891003
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1149/1.1837252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031322760
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1149/1.1837375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006764786
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1149/1.1838271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053246354
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1149/1.1838589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014568453
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1149/1.2055071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018928531
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.37172.30 schema:alternateName Korea Advanced Institute of Science and Technology
159 schema:name Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-Dong, Yuseong-Gu, 305-701, Daejeon, Republic of Korea
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.418979.a schema:alternateName Korea Institute of Energy Research
162 schema:name Korea Institute of Energy Research, 71-2 Jang-Dong, Yuseong-Gu, 305-343, Daejeon, Republic of Korea
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...