Teaching Chemometrics with a Bioprocess: Analytical Methods Comparison Using Bivariate Linear Regression View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-10

AUTHORS

Vanina G. Franco, Victor E. Mantovani, Hector C. Goicoechea, Alejandro C. Olivieri

ABSTRACT

We present an advanced analytical chemistry laboratory experiment involving chemometrics. Students perform a comparison of two analytical methods by checking several analyte concentrations within a certain range by using least-squares linear regression. They obtain statistical information such as the presence of constant and proportional biases. The exercise is based on the determination of glucose levels using two colorimetric methods (enzymatic and Somogyi—Nelson) in a very simple batch system formed by an infusion of tea, glucose, and a combination of a yeast (Schizosacaromyces pombe) and a bacteria (Acetobacter xylimun), usually named Kombucha. Several samples are collected during a week of laboratory work, and measurements are performed in a subsequent four-hour laboratory class. Although commercial computer software exists for a variety of statistical applications, specific programs for the application of statistics to analytical chemistry are not prevalent. In order to solve this particular problem, a Matlab 5.3 routine is presented. More... »

PAGES

265-269

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00897020596a

DOI

http://dx.doi.org/10.1007/s00897020596a

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052271588


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "C\u00e1tedra de Qu\u00edmica Analitica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, CC. 242, S3000, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franco", 
        "givenName": "Vanina G.", 
        "id": "sg:person.01226333104.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226333104.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "C\u00e1tedra de Qu\u00edmica Analitica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, CC. 242, S3000, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mantovani", 
        "givenName": "Victor E.", 
        "id": "sg:person.01141347615.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141347615.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "C\u00e1tedra de Qu\u00edmica Analitica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, CC. 242, S3000, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goicoechea", 
        "givenName": "Hector C.", 
        "id": "sg:person.0754117262.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Rosario", 
          "id": "https://www.grid.ac/institutes/grid.10814.3c", 
          "name": [
            "Departamento de Qu\u00edmica Analitica, Facultad de Ciencias Bioqu\u00edmicas y Farmac\u00e9uticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRL, Rosario, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olivieri", 
        "givenName": "Alejandro C.", 
        "id": "sg:person.0630070606.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630070606.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-10", 
    "datePublishedReg": "2002-10-01", 
    "description": "We present an advanced analytical chemistry laboratory experiment involving chemometrics. Students perform a comparison of two analytical methods by checking several analyte concentrations within a certain range by using least-squares linear regression. They obtain statistical information such as the presence of constant and proportional biases. The exercise is based on the determination of glucose levels using two colorimetric methods (enzymatic and Somogyi\u2014Nelson) in a very simple batch system formed by an infusion of tea, glucose, and a combination of a yeast (Schizosacaromyces pombe) and a bacteria (Acetobacter xylimun), usually named Kombucha. Several samples are collected during a week of laboratory work, and measurements are performed in a subsequent four-hour laboratory class. Although commercial computer software exists for a variety of statistical applications, specific programs for the application of statistics to analytical chemistry are not prevalent. In order to solve this particular problem, a Matlab 5.3 routine is presented.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00897020596a", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044209", 
        "issn": [
          "1430-4171"
        ], 
        "name": "The Chemical Educator", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Teaching Chemometrics with a Bioprocess: Analytical Methods Comparison Using Bivariate Linear Regression", 
    "pagination": "265-269", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f8fcb859f85faff9acbbf20033f1668665a0daacae600a320a4dbde48cbb4682"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00897020596a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052271588"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00897020596a", 
      "https://app.dimensions.ai/details/publication/pub.1052271588"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00897020596a"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00897020596a'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00897020596a'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00897020596a'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00897020596a'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00897020596a schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N07d5b2d4b5da4d1fac1d8a6844213a1e
4 schema:datePublished 2002-10
5 schema:datePublishedReg 2002-10-01
6 schema:description We present an advanced analytical chemistry laboratory experiment involving chemometrics. Students perform a comparison of two analytical methods by checking several analyte concentrations within a certain range by using least-squares linear regression. They obtain statistical information such as the presence of constant and proportional biases. The exercise is based on the determination of glucose levels using two colorimetric methods (enzymatic and Somogyi—Nelson) in a very simple batch system formed by an infusion of tea, glucose, and a combination of a yeast (Schizosacaromyces pombe) and a bacteria (Acetobacter xylimun), usually named Kombucha. Several samples are collected during a week of laboratory work, and measurements are performed in a subsequent four-hour laboratory class. Although commercial computer software exists for a variety of statistical applications, specific programs for the application of statistics to analytical chemistry are not prevalent. In order to solve this particular problem, a Matlab 5.3 routine is presented.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N879273eeca6d4224a30596967e436ccd
11 Nbb93a6639bfe44a3a8c0f2be32661a7b
12 sg:journal.1044209
13 schema:name Teaching Chemometrics with a Bioprocess: Analytical Methods Comparison Using Bivariate Linear Regression
14 schema:pagination 265-269
15 schema:productId N98fce951b32d427991ade99f039fa8ce
16 Nbcedb167c63a4c959a29c20b6fb493a5
17 Nc2910c6f948b41fe870430625a9fa819
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052271588
19 https://doi.org/10.1007/s00897020596a
20 schema:sdDatePublished 2019-04-10T19:09
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nfedf057d70b549e2895d86f841506a1b
23 schema:url http://link.springer.com/10.1007%2Fs00897020596a
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N07d5b2d4b5da4d1fac1d8a6844213a1e rdf:first sg:person.01226333104.46
28 rdf:rest Nc4f56baaa88d48e58a692d6c71b13e89
29 N28d3a00b4a9f41eaa4225e9b1f62f26c rdf:first sg:person.0754117262.29
30 rdf:rest N8f21860ac949403bbb0ae55132b3fa51
31 N879273eeca6d4224a30596967e436ccd schema:volumeNumber 7
32 rdf:type schema:PublicationVolume
33 N8f21860ac949403bbb0ae55132b3fa51 rdf:first sg:person.0630070606.49
34 rdf:rest rdf:nil
35 N98fce951b32d427991ade99f039fa8ce schema:name dimensions_id
36 schema:value pub.1052271588
37 rdf:type schema:PropertyValue
38 Nbb93a6639bfe44a3a8c0f2be32661a7b schema:issueNumber 5
39 rdf:type schema:PublicationIssue
40 Nbcedb167c63a4c959a29c20b6fb493a5 schema:name readcube_id
41 schema:value f8fcb859f85faff9acbbf20033f1668665a0daacae600a320a4dbde48cbb4682
42 rdf:type schema:PropertyValue
43 Nc2910c6f948b41fe870430625a9fa819 schema:name doi
44 schema:value 10.1007/s00897020596a
45 rdf:type schema:PropertyValue
46 Nc4f56baaa88d48e58a692d6c71b13e89 rdf:first sg:person.01141347615.37
47 rdf:rest N28d3a00b4a9f41eaa4225e9b1f62f26c
48 Nfedf057d70b549e2895d86f841506a1b schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
54 schema:name Statistics
55 rdf:type schema:DefinedTerm
56 sg:journal.1044209 schema:issn 1430-4171
57 schema:name The Chemical Educator
58 rdf:type schema:Periodical
59 sg:person.01141347615.37 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
60 schema:familyName Mantovani
61 schema:givenName Victor E.
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141347615.37
63 rdf:type schema:Person
64 sg:person.01226333104.46 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
65 schema:familyName Franco
66 schema:givenName Vanina G.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226333104.46
68 rdf:type schema:Person
69 sg:person.0630070606.49 schema:affiliation https://www.grid.ac/institutes/grid.10814.3c
70 schema:familyName Olivieri
71 schema:givenName Alejandro C.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630070606.49
73 rdf:type schema:Person
74 sg:person.0754117262.29 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
75 schema:familyName Goicoechea
76 schema:givenName Hector C.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29
78 rdf:type schema:Person
79 https://www.grid.ac/institutes/grid.10798.37 schema:alternateName National University of the Littoral
80 schema:name Cátedra de Química Analitica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, CC. 242, S3000, Santa Fe, Argentina
81 rdf:type schema:Organization
82 https://www.grid.ac/institutes/grid.10814.3c schema:alternateName National University of Rosario
83 schema:name Departamento de Química Analitica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRL, Rosario, Argentina
84 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...