An in silico design of bioavailability for kinase inhibitors evaluating the mechanistic rationale in the CYP metabolism of erlotinib View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Sai Manohar Chelli, Parth Gupta, Siva Kumar Belliraj

ABSTRACT

Soft spot analysis helps evaluate the site of the metabolic lability that impacts the bio-availability of the drug. However, given its laborious and time consuming experimentation, we propose a reliable and cheap in silico strategy. In this context, we hypothesized a mechanistic rationale for metabolism of erlotinib by the CYP3A4 enzyme. The comparison of the 3D conformations of the target CYP class of enzymes using MD simulations with GROMACS helped evaluate its impact on the metabolism. The molecular docking studies using Autodock-Vina ascertained the explicit role of the Fe ion present in the Heme moiety in this process. This mechanism was confirmed with respect to 13 other popular approved FDA kinase inhibitors using ab initio DFT calculations using Gaussian 09 (G09), molecular docking studies with Autodock-Vina, and MD simulations with GROMACS. We then developed a quantitative (Q-Met) metabolic profile of these soft spots in the molecules and demonstrated the lack of a linear relationship between the extent of metabolism and drug efficacy. We thus propose an economic in silico strategy for the early prediction of the lability in kinase inhibitors to help model their bio-availability and activity simultaneously, prior to clinical testing. More... »

PAGES

65

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00894-018-3917-z

DOI

http://dx.doi.org/10.1007/s00894-018-3917-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112098222

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30762124


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sri Sathya Sai Institute of Higher Learning", 
          "id": "https://www.grid.ac/institutes/grid.444651.6", 
          "name": [
            "Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chelli", 
        "givenName": "Sai Manohar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras", 
          "id": "https://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Department of Chemistry, IIT Madras, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "Parth", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sri Sathya Sai Institute of Higher Learning", 
          "id": "https://www.grid.ac/institutes/grid.444651.6", 
          "name": [
            "Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belliraj", 
        "givenName": "Siva Kumar", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0092-8674(84)90438-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001238246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpba.2012.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006471416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/243290a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012018569", 
          "https://doi.org/10.1038/243290a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/49.6.965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015708158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1987.tb36253.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016407361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198512053132301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019467374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/dmd.106.010934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025343519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1987.tb36254.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027206155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/17425255.2013.834046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027797500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-4655(95)00042-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028259704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035890801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/315758a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037653775", 
          "https://doi.org/10.1038/315758a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bmcl.2013.06.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039003385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.6.5.1803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043715350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045495591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00115a009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055707933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00175a040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055711535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079231090", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Soft spot analysis helps evaluate the site of the metabolic lability that impacts the bio-availability of the drug. However, given its laborious and time consuming experimentation, we propose a reliable and cheap in silico strategy. In this context, we hypothesized a mechanistic rationale for metabolism of erlotinib by the CYP3A4 enzyme. The comparison of the 3D conformations of the target CYP class of enzymes using MD simulations with GROMACS helped evaluate its impact on the metabolism. The molecular docking studies using Autodock-Vina ascertained the explicit role of the Fe ion present in the Heme moiety in this process. This mechanism was confirmed with respect to 13 other popular approved FDA kinase inhibitors using ab initio DFT calculations using Gaussian 09 (G09), molecular docking studies with Autodock-Vina, and MD simulations with GROMACS. We then developed a quantitative (Q-Met) metabolic profile of these soft spots in the molecules and demonstrated the lack of a linear relationship between the extent of metabolism and drug efficacy. We thus propose an economic in silico strategy for the early prediction of the lability in kinase inhibitors to help model their bio-availability and activity simultaneously, prior to clinical testing.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00894-018-3917-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1118122", 
        "issn": [
          "1610-2940", 
          "0948-5023"
        ], 
        "name": "Journal of Molecular Modeling", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "An in silico design of bioavailability for kinase inhibitors evaluating the mechanistic rationale in the CYP metabolism of erlotinib", 
    "pagination": "65", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "55604f5e326bbc709a78d6111d9635f790d1823a5b5be28d27ad4d07c3e7ad91"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30762124"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9806569"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00894-018-3917-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112098222"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00894-018-3917-z", 
      "https://app.dimensions.ai/details/publication/pub.1112098222"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53984_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00894-018-3917-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00894-018-3917-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00894-018-3917-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00894-018-3917-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00894-018-3917-z'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      47 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00894-018-3917-z schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nfe0cd7bf5eee40b695adcafe86b69bbd
4 schema:citation sg:pub.10.1038/243290a0
5 sg:pub.10.1038/315758a0
6 https://app.dimensions.ai/details/publication/pub.1079231090
7 https://doi.org/10.1002/prot.10465
8 https://doi.org/10.1016/0010-4655(95)00042-e
9 https://doi.org/10.1016/0092-8674(84)90438-0
10 https://doi.org/10.1016/j.bmcl.2013.06.054
11 https://doi.org/10.1016/j.jpba.2012.05.024
12 https://doi.org/10.1021/ja00115a009
13 https://doi.org/10.1021/ja00175a040
14 https://doi.org/10.1056/nejm198512053132301
15 https://doi.org/10.1093/nar/gkj067
16 https://doi.org/10.1111/j.1749-6632.1987.tb36253.x
17 https://doi.org/10.1111/j.1749-6632.1987.tb36254.x
18 https://doi.org/10.1124/dmd.106.010934
19 https://doi.org/10.1128/mcb.6.5.1803
20 https://doi.org/10.1373/49.6.965
21 https://doi.org/10.1517/17425255.2013.834046
22 schema:datePublished 2019-03
23 schema:datePublishedReg 2019-03-01
24 schema:description Soft spot analysis helps evaluate the site of the metabolic lability that impacts the bio-availability of the drug. However, given its laborious and time consuming experimentation, we propose a reliable and cheap in silico strategy. In this context, we hypothesized a mechanistic rationale for metabolism of erlotinib by the CYP3A4 enzyme. The comparison of the 3D conformations of the target CYP class of enzymes using MD simulations with GROMACS helped evaluate its impact on the metabolism. The molecular docking studies using Autodock-Vina ascertained the explicit role of the Fe ion present in the Heme moiety in this process. This mechanism was confirmed with respect to 13 other popular approved FDA kinase inhibitors using ab initio DFT calculations using Gaussian 09 (G09), molecular docking studies with Autodock-Vina, and MD simulations with GROMACS. We then developed a quantitative (Q-Met) metabolic profile of these soft spots in the molecules and demonstrated the lack of a linear relationship between the extent of metabolism and drug efficacy. We thus propose an economic in silico strategy for the early prediction of the lability in kinase inhibitors to help model their bio-availability and activity simultaneously, prior to clinical testing.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N55589c51a4bf4f31842e7eda0b2eeed0
29 N78bc1e8cb1554aa594c2809944a023a7
30 sg:journal.1118122
31 schema:name An in silico design of bioavailability for kinase inhibitors evaluating the mechanistic rationale in the CYP metabolism of erlotinib
32 schema:pagination 65
33 schema:productId N1d031a5f70f24a0dabeae4ce475213f2
34 N20e60cd0b087441d8da04ab3e648111e
35 N8b2e84ec7f14429eb613ef0ff36f7785
36 Nf429e15e1f1a47d1b1cc9c6fca1ad4a5
37 Nfe5222aae6994cd39a2be56aa256d609
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112098222
39 https://doi.org/10.1007/s00894-018-3917-z
40 schema:sdDatePublished 2019-04-11T12:12
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N544da813f6b6490e876461453832630e
43 schema:url https://link.springer.com/10.1007%2Fs00894-018-3917-z
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0962c3df242a4772b59619f4f4dd55e2 schema:affiliation https://www.grid.ac/institutes/grid.444651.6
48 schema:familyName Chelli
49 schema:givenName Sai Manohar
50 rdf:type schema:Person
51 N1d031a5f70f24a0dabeae4ce475213f2 schema:name readcube_id
52 schema:value 55604f5e326bbc709a78d6111d9635f790d1823a5b5be28d27ad4d07c3e7ad91
53 rdf:type schema:PropertyValue
54 N20e60cd0b087441d8da04ab3e648111e schema:name nlm_unique_id
55 schema:value 9806569
56 rdf:type schema:PropertyValue
57 N30ce0014376e4a49945dbe5a3cf9ebac schema:affiliation https://www.grid.ac/institutes/grid.444651.6
58 schema:familyName Belliraj
59 schema:givenName Siva Kumar
60 rdf:type schema:Person
61 N3ed117838f474befb7c0d5f6822f1735 rdf:first N7079e2ad416d4652a13116955a8d28f7
62 rdf:rest Ne9a6cd5894ba4e29a2e486e88fcc2c12
63 N544da813f6b6490e876461453832630e schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N55589c51a4bf4f31842e7eda0b2eeed0 schema:issueNumber 3
66 rdf:type schema:PublicationIssue
67 N7079e2ad416d4652a13116955a8d28f7 schema:affiliation https://www.grid.ac/institutes/grid.417969.4
68 schema:familyName Gupta
69 schema:givenName Parth
70 rdf:type schema:Person
71 N78bc1e8cb1554aa594c2809944a023a7 schema:volumeNumber 25
72 rdf:type schema:PublicationVolume
73 N8b2e84ec7f14429eb613ef0ff36f7785 schema:name pubmed_id
74 schema:value 30762124
75 rdf:type schema:PropertyValue
76 Ne9a6cd5894ba4e29a2e486e88fcc2c12 rdf:first N30ce0014376e4a49945dbe5a3cf9ebac
77 rdf:rest rdf:nil
78 Nf429e15e1f1a47d1b1cc9c6fca1ad4a5 schema:name dimensions_id
79 schema:value pub.1112098222
80 rdf:type schema:PropertyValue
81 Nfe0cd7bf5eee40b695adcafe86b69bbd rdf:first N0962c3df242a4772b59619f4f4dd55e2
82 rdf:rest N3ed117838f474befb7c0d5f6822f1735
83 Nfe5222aae6994cd39a2be56aa256d609 schema:name doi
84 schema:value 10.1007/s00894-018-3917-z
85 rdf:type schema:PropertyValue
86 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
87 schema:name Biological Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
90 schema:name Biochemistry and Cell Biology
91 rdf:type schema:DefinedTerm
92 sg:journal.1118122 schema:issn 0948-5023
93 1610-2940
94 schema:name Journal of Molecular Modeling
95 rdf:type schema:Periodical
96 sg:pub.10.1038/243290a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012018569
97 https://doi.org/10.1038/243290a0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/315758a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037653775
100 https://doi.org/10.1038/315758a0
101 rdf:type schema:CreativeWork
102 https://app.dimensions.ai/details/publication/pub.1079231090 schema:CreativeWork
103 https://doi.org/10.1002/prot.10465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045495591
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0010-4655(95)00042-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1028259704
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0092-8674(84)90438-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001238246
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.bmcl.2013.06.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039003385
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jpba.2012.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006471416
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1021/ja00115a009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055707933
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/ja00175a040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055711535
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1056/nejm198512053132301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019467374
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1093/nar/gkj067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035890801
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1111/j.1749-6632.1987.tb36253.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016407361
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1111/j.1749-6632.1987.tb36254.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027206155
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1124/dmd.106.010934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025343519
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1128/mcb.6.5.1803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043715350
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1373/49.6.965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015708158
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1517/17425255.2013.834046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027797500
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.417969.4 schema:alternateName Indian Institute of Technology Madras
134 schema:name Department of Chemistry, IIT Madras, Chennai, India
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.444651.6 schema:alternateName Sri Sathya Sai Institute of Higher Learning
137 schema:name Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...