An in silico design of bioavailability for kinase inhibitors evaluating the mechanistic rationale in the CYP metabolism of erlotinib View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-14

AUTHORS

Sai Manohar Chelli, Parth Gupta, Siva Kumar Belliraj

ABSTRACT

Soft spot analysis helps evaluate the site of the metabolic lability that impacts the bio-availability of the drug. However, given its laborious and time consuming experimentation, we propose a reliable and cheap in silico strategy. In this context, we hypothesized a mechanistic rationale for metabolism of erlotinib by the CYP3A4 enzyme. The comparison of the 3D conformations of the target CYP class of enzymes using MD simulations with GROMACS helped evaluate its impact on the metabolism. The molecular docking studies using Autodock-Vina ascertained the explicit role of the Fe ion present in the Heme moiety in this process. This mechanism was confirmed with respect to 13 other popular approved FDA kinase inhibitors using ab initio DFT calculations using Gaussian 09 (G09), molecular docking studies with Autodock-Vina, and MD simulations with GROMACS. We then developed a quantitative (Q-Met) metabolic profile of these soft spots in the molecules and demonstrated the lack of a linear relationship between the extent of metabolism and drug efficacy. We thus propose an economic in silico strategy for the early prediction of the lability in kinase inhibitors to help model their bio-availability and activity simultaneously, prior to clinical testing. More... »

PAGES

65

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00894-018-3917-z

DOI

http://dx.doi.org/10.1007/s00894-018-3917-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112098222

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30762124


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0304", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medicinal and Biomolecular Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Availability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytochrome P-450 CYP3A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Erlotinib Hydrochloride", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Docking Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Dynamics Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Kinase Inhibitors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India", 
          "id": "http://www.grid.ac/institutes/grid.444651.6", 
          "name": [
            "Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chelli", 
        "givenName": "Sai Manohar", 
        "id": "sg:person.015770510757.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770510757.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, IIT Madras, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Department of Chemistry, IIT Madras, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "Parth", 
        "id": "sg:person.010462071215.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010462071215.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India", 
          "id": "http://www.grid.ac/institutes/grid.444651.6", 
          "name": [
            "Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belliraj", 
        "givenName": "Siva Kumar", 
        "id": "sg:person.012762765615.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762765615.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/243290a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012018569", 
          "https://doi.org/10.1038/243290a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/315758a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037653775", 
          "https://doi.org/10.1038/315758a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-14", 
    "datePublishedReg": "2019-02-14", 
    "description": "Soft spot analysis helps evaluate the site of the metabolic lability that impacts the bio-availability of the drug. However, given its laborious and time consuming experimentation, we propose a reliable and cheap in silico strategy. In this context, we hypothesized a mechanistic rationale for metabolism of erlotinib by the CYP3A4 enzyme. The comparison of the 3D conformations of the target CYP class of enzymes using MD simulations with GROMACS helped evaluate its impact on the metabolism. The molecular docking studies using Autodock-Vina ascertained the explicit role of the Fe ion present in the Heme moiety in this process. This mechanism was confirmed with respect to 13 other popular approved FDA kinase inhibitors using ab initio DFT calculations using Gaussian 09 (G09), molecular docking studies with Autodock-Vina, and MD simulations with GROMACS. We then developed a quantitative (Q-Met) metabolic profile of these soft spots in the molecules and demonstrated the lack of a linear relationship between the extent of metabolism and drug efficacy. We thus propose an economic in silico strategy for the early prediction of the lability in kinase inhibitors to help model their bio-availability and activity simultaneously, prior to clinical testing.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00894-018-3917-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1118122", 
        "issn": [
          "1610-2940", 
          "0948-5023"
        ], 
        "name": "Journal of Molecular Modeling", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "kinase inhibitors", 
      "metabolism of erlotinib", 
      "extent of metabolism", 
      "clinical testing", 
      "CYP metabolism", 
      "drug efficacy", 
      "CYP3A4 enzyme", 
      "metabolic profile", 
      "mechanistic rationale", 
      "erlotinib", 
      "metabolism", 
      "molecular docking studies", 
      "inhibitors", 
      "early prediction", 
      "metabolic lability", 
      "docking studies", 
      "quantitative metabolic profiles", 
      "silico strategy", 
      "drugs", 
      "rationale", 
      "efficacy", 
      "study", 
      "enzyme", 
      "soft spots", 
      "bioavailability", 
      "lability", 
      "heme moiety", 
      "testing", 
      "strategies", 
      "role", 
      "activity", 
      "lack", 
      "mechanism", 
      "profile", 
      "Autodock-Vina", 
      "extent", 
      "spot analysis", 
      "sites", 
      "relationship", 
      "linear relationship", 
      "time", 
      "impact", 
      "comparison", 
      "present", 
      "analysis", 
      "silico design", 
      "molecules", 
      "spots", 
      "respect", 
      "class", 
      "explicit role", 
      "context", 
      "design", 
      "moiety", 
      "process", 
      "prediction", 
      "experimentation", 
      "conformation", 
      "GROMACS", 
      "calculations", 
      "ion present", 
      "simulations", 
      "MD simulations", 
      "ab initio DFT calculations", 
      "initio DFT calculations", 
      "DFT calculations", 
      "Gaussian 09", 
      "Soft spot analysis", 
      "target CYP class", 
      "CYP class", 
      "Fe ion present", 
      "FDA kinase inhibitors"
    ], 
    "name": "An in silico design of bioavailability for kinase inhibitors evaluating the mechanistic rationale in the CYP metabolism of erlotinib", 
    "pagination": "65", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112098222"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00894-018-3917-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30762124"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00894-018-3917-z", 
      "https://app.dimensions.ai/details/publication/pub.1112098222"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_817.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00894-018-3917-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00894-018-3917-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00894-018-3917-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00894-018-3917-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00894-018-3917-z'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      22 PREDICATES      115 URIs      103 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00894-018-3917-z schema:about N0bdb8c8840cd43c0bc0190d02f2c1d16
2 N0bede76419e04e1fa66d1e282df30d7e
3 N1b73537e217b4d5da3e303b6ed631618
4 N41c4e90e227341c9a81232b5292076cb
5 N42cc4d97202c49fe81c7f5c89d7f72a4
6 N826a5559bdca40ad9f3cb2da6943eb08
7 N85713f16efdf456fa6be2c0259e5efdb
8 N9438b927963b43a1acd4bf2916c0bc85
9 Na82e4c42af7a42fe83293ff0431eb65d
10 Nbca1b2e261a94fadbc40e9a963f43c79
11 Nc4c2962f681f4514bedc8b804ce46d9f
12 Ncedcf550ca81462082c522fe68ae5283
13 Ndd1dcc87467d4b27ad66c6a75a805fb8
14 anzsrc-for:03
15 anzsrc-for:0304
16 anzsrc-for:0306
17 anzsrc-for:0307
18 schema:author N1e91ab1aa9944a2f90c4994342035070
19 schema:citation sg:pub.10.1038/243290a0
20 sg:pub.10.1038/315758a0
21 schema:datePublished 2019-02-14
22 schema:datePublishedReg 2019-02-14
23 schema:description Soft spot analysis helps evaluate the site of the metabolic lability that impacts the bio-availability of the drug. However, given its laborious and time consuming experimentation, we propose a reliable and cheap in silico strategy. In this context, we hypothesized a mechanistic rationale for metabolism of erlotinib by the CYP3A4 enzyme. The comparison of the 3D conformations of the target CYP class of enzymes using MD simulations with GROMACS helped evaluate its impact on the metabolism. The molecular docking studies using Autodock-Vina ascertained the explicit role of the Fe ion present in the Heme moiety in this process. This mechanism was confirmed with respect to 13 other popular approved FDA kinase inhibitors using ab initio DFT calculations using Gaussian 09 (G09), molecular docking studies with Autodock-Vina, and MD simulations with GROMACS. We then developed a quantitative (Q-Met) metabolic profile of these soft spots in the molecules and demonstrated the lack of a linear relationship between the extent of metabolism and drug efficacy. We thus propose an economic in silico strategy for the early prediction of the lability in kinase inhibitors to help model their bio-availability and activity simultaneously, prior to clinical testing.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N23a01b0261e34db49f6f3757ec2b6086
28 N32828484a6394b5d9fa66481a5d7a0a5
29 sg:journal.1118122
30 schema:keywords Autodock-Vina
31 CYP class
32 CYP metabolism
33 CYP3A4 enzyme
34 DFT calculations
35 FDA kinase inhibitors
36 Fe ion present
37 GROMACS
38 Gaussian 09
39 MD simulations
40 Soft spot analysis
41 ab initio DFT calculations
42 activity
43 analysis
44 bioavailability
45 calculations
46 class
47 clinical testing
48 comparison
49 conformation
50 context
51 design
52 docking studies
53 drug efficacy
54 drugs
55 early prediction
56 efficacy
57 enzyme
58 erlotinib
59 experimentation
60 explicit role
61 extent
62 extent of metabolism
63 heme moiety
64 impact
65 inhibitors
66 initio DFT calculations
67 ion present
68 kinase inhibitors
69 lability
70 lack
71 linear relationship
72 mechanism
73 mechanistic rationale
74 metabolic lability
75 metabolic profile
76 metabolism
77 metabolism of erlotinib
78 moiety
79 molecular docking studies
80 molecules
81 prediction
82 present
83 process
84 profile
85 quantitative metabolic profiles
86 rationale
87 relationship
88 respect
89 role
90 silico design
91 silico strategy
92 simulations
93 sites
94 soft spots
95 spot analysis
96 spots
97 strategies
98 study
99 target CYP class
100 testing
101 time
102 schema:name An in silico design of bioavailability for kinase inhibitors evaluating the mechanistic rationale in the CYP metabolism of erlotinib
103 schema:pagination 65
104 schema:productId N3bfd7e6fdf9447c7a8eaa4f0471ff325
105 Nad220a4b30d6449eae1bc3bde5d89f64
106 Nebedc675e5b24d40a400562178bc88d2
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112098222
108 https://doi.org/10.1007/s00894-018-3917-z
109 schema:sdDatePublished 2021-11-01T18:36
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher Ndeaa9e8072a640f6a00bdf99087c7ebf
112 schema:url https://doi.org/10.1007/s00894-018-3917-z
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N0bdb8c8840cd43c0bc0190d02f2c1d16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Humans
118 rdf:type schema:DefinedTerm
119 N0bede76419e04e1fa66d1e282df30d7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Protein Kinase Inhibitors
121 rdf:type schema:DefinedTerm
122 N1b73537e217b4d5da3e303b6ed631618 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Molecular Docking Simulation
124 rdf:type schema:DefinedTerm
125 N1e91ab1aa9944a2f90c4994342035070 rdf:first sg:person.015770510757.41
126 rdf:rest Nb762e880ef914a3f92f770aa6fb58fe3
127 N23a01b0261e34db49f6f3757ec2b6086 schema:issueNumber 3
128 rdf:type schema:PublicationIssue
129 N32828484a6394b5d9fa66481a5d7a0a5 schema:volumeNumber 25
130 rdf:type schema:PublicationVolume
131 N3bfd7e6fdf9447c7a8eaa4f0471ff325 schema:name pubmed_id
132 schema:value 30762124
133 rdf:type schema:PropertyValue
134 N41c4e90e227341c9a81232b5292076cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Molecular Dynamics Simulation
136 rdf:type schema:DefinedTerm
137 N42cc4d97202c49fe81c7f5c89d7f72a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Molecular Conformation
139 rdf:type schema:DefinedTerm
140 N47dab345504b4fb2934628adcaafdbbb rdf:first sg:person.012762765615.15
141 rdf:rest rdf:nil
142 N826a5559bdca40ad9f3cb2da6943eb08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Computer Simulation
144 rdf:type schema:DefinedTerm
145 N85713f16efdf456fa6be2c0259e5efdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Models, Molecular
147 rdf:type schema:DefinedTerm
148 N9438b927963b43a1acd4bf2916c0bc85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Cytochrome P-450 CYP3A
150 rdf:type schema:DefinedTerm
151 Na82e4c42af7a42fe83293ff0431eb65d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Drug Design
153 rdf:type schema:DefinedTerm
154 Nad220a4b30d6449eae1bc3bde5d89f64 schema:name doi
155 schema:value 10.1007/s00894-018-3917-z
156 rdf:type schema:PropertyValue
157 Nb762e880ef914a3f92f770aa6fb58fe3 rdf:first sg:person.010462071215.99
158 rdf:rest N47dab345504b4fb2934628adcaafdbbb
159 Nbca1b2e261a94fadbc40e9a963f43c79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Thermodynamics
161 rdf:type schema:DefinedTerm
162 Nc4c2962f681f4514bedc8b804ce46d9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Binding Sites
164 rdf:type schema:DefinedTerm
165 Ncedcf550ca81462082c522fe68ae5283 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Erlotinib Hydrochloride
167 rdf:type schema:DefinedTerm
168 Ndd1dcc87467d4b27ad66c6a75a805fb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Biological Availability
170 rdf:type schema:DefinedTerm
171 Ndeaa9e8072a640f6a00bdf99087c7ebf schema:name Springer Nature - SN SciGraph project
172 rdf:type schema:Organization
173 Nebedc675e5b24d40a400562178bc88d2 schema:name dimensions_id
174 schema:value pub.1112098222
175 rdf:type schema:PropertyValue
176 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
177 schema:name Chemical Sciences
178 rdf:type schema:DefinedTerm
179 anzsrc-for:0304 schema:inDefinedTermSet anzsrc-for:
180 schema:name Medicinal and Biomolecular Chemistry
181 rdf:type schema:DefinedTerm
182 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
183 schema:name Physical Chemistry (incl. Structural)
184 rdf:type schema:DefinedTerm
185 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
186 schema:name Theoretical and Computational Chemistry
187 rdf:type schema:DefinedTerm
188 sg:journal.1118122 schema:issn 0948-5023
189 1610-2940
190 schema:name Journal of Molecular Modeling
191 schema:publisher Springer Nature
192 rdf:type schema:Periodical
193 sg:person.010462071215.99 schema:affiliation grid-institutes:grid.417969.4
194 schema:familyName Gupta
195 schema:givenName Parth
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010462071215.99
197 rdf:type schema:Person
198 sg:person.012762765615.15 schema:affiliation grid-institutes:grid.444651.6
199 schema:familyName Belliraj
200 schema:givenName Siva Kumar
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762765615.15
202 rdf:type schema:Person
203 sg:person.015770510757.41 schema:affiliation grid-institutes:grid.444651.6
204 schema:familyName Chelli
205 schema:givenName Sai Manohar
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770510757.41
207 rdf:type schema:Person
208 sg:pub.10.1038/243290a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012018569
209 https://doi.org/10.1038/243290a0
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/315758a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037653775
212 https://doi.org/10.1038/315758a0
213 rdf:type schema:CreativeWork
214 grid-institutes:grid.417969.4 schema:alternateName Department of Chemistry, IIT Madras, Chennai, India
215 schema:name Department of Chemistry, IIT Madras, Chennai, India
216 rdf:type schema:Organization
217 grid-institutes:grid.444651.6 schema:alternateName Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India
218 schema:name Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...