New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10-02

AUTHORS

Aline A. Oliveira, Célio F. Lipinski, Estevão B. Pereira, Kathia M. Honorio, Patrícia R. Oliveira, Karen C. Weber, Roseli A. F. Romero, Alexsandro G. de Sousa, Albérico B. F. da Silva

ABSTRACT

The treatment of neuropathic pain is very complex and there are few drugs approved for this purpose. Among the studied compounds in the literature, sigma-1 receptor antagonists have shown to be promising. In order to develop QSAR studies applied to the compounds of 1-arylpyrazole derivatives, multivariate analyses have been performed in this work using partial least square (PLS) and artificial neural network (ANN) methods. A PLS model has been obtained and validated with 45 compounds in the training set and 13 compounds in the test set (r2training = 0.761, q2 = 0.656, r2test = 0.746, MSEtest = 0.132 and MAEtest = 0.258). Additionally, multi-layer perceptron ANNs (MLP-ANNs) were employed in order to propose non-linear models trained by gradient descent with momentum backpropagation function. Based on MSEtest values, the best MLP-ANN models were combined in a MLP-ANN consensus model (MLP-ANN-CM; r2test = 0.824, MSEtest = 0.088 and MAEtest = 0.197). In the end, a general consensus model (GCM) has been obtained using PLS and MLP-ANN-CM models (r2test = 0.811, MSEtest = 0.100 and MAEtest = 0.218). Besides, the selected descriptors (GGI6, Mor23m, SRW06, H7m, MLOGP, and μ) revealed important features that should be considered when one is planning new compounds of the 1-arylpyrazole class. The multivariate models proposed in this work are definitely a powerful tool for the rational drug design of new compounds for neuropathic pain treatment.Graphical abstractMain scaffold of the 1-arylpyrazole derivatives and the selected descriptors. More... »

PAGES

302

References to SciGraph publications

  • 2006-06-06. A partial least squares regression study with antioxidant flavonoid compounds in STRUCTURAL CHEMISTRY
  • 2014. Weather Prediction Using Error Minimization Algorithm on Feedforward Artificial Neural Network in INTELLIGENT COMPUTING, NETWORKING, AND INFORMATICS
  • 2005-06. Virtual Computational Chemistry Laboratory – Design and Description in JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN
  • 2012-02-01. The neuropathic pain market in NATURE REVIEWS DRUG DISCOVERY
  • 2004-04. σ-1 Receptor Ligands in CNS DRUGS
  • 2008-07-16. A neural networks study of quinone compounds with trypanocidal activity in JOURNAL OF MOLECULAR MODELING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00894-017-3444-3

    DOI

    http://dx.doi.org/10.1007/s00894-017-3444-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092051905

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28971260


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0304", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medicinal and Biomolecular Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Theoretical and Computational Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Least-Squares Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neural Networks, Computer", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neuralgia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pyrazoles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Structure-Activity Relationship", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, sigma", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Escola de Artes, Ci\u00eancias e Humanidades, Universidade de S\u00e3o Paulo, Av. Arlindo Bettio, 1000, 03828-000, S\u00e3o Paulo, SP, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Instituto de Qu\u00edmica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, Av. Trabalhador S\u00e3o-Carlense 400, 13560-970, S\u00e3o Carlos, SP, Brazil", 
                "Escola de Artes, Ci\u00eancias e Humanidades, Universidade de S\u00e3o Paulo, Av. Arlindo Bettio, 1000, 03828-000, S\u00e3o Paulo, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oliveira", 
            "givenName": "Aline A.", 
            "id": "sg:person.01150007747.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150007747.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Qu\u00edmica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, Av. Trabalhador S\u00e3o-Carlense 400, 13560-970, S\u00e3o Carlos, SP, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Instituto de Qu\u00edmica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, Av. Trabalhador S\u00e3o-Carlense 400, 13560-970, S\u00e3o Carlos, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lipinski", 
            "givenName": "C\u00e9lio F.", 
            "id": "sg:person.012263174103.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012263174103.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Qu\u00edmica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, Av. Trabalhador S\u00e3o-Carlense 400, 13560-970, S\u00e3o Carlos, SP, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Instituto de Qu\u00edmica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, Av. Trabalhador S\u00e3o-Carlense 400, 13560-970, S\u00e3o Carlos, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pereira", 
            "givenName": "Estev\u00e3o B.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Escola de Artes, Ci\u00eancias e Humanidades, Universidade de S\u00e3o Paulo, Av. Arlindo Bettio, 1000, 03828-000, S\u00e3o Paulo, SP, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Escola de Artes, Ci\u00eancias e Humanidades, Universidade de S\u00e3o Paulo, Av. Arlindo Bettio, 1000, 03828-000, S\u00e3o Paulo, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Honorio", 
            "givenName": "Kathia M.", 
            "id": "sg:person.01157520053.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157520053.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Escola de Artes, Ci\u00eancias e Humanidades, Universidade de S\u00e3o Paulo, Av. Arlindo Bettio, 1000, 03828-000, S\u00e3o Paulo, SP, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Escola de Artes, Ci\u00eancias e Humanidades, Universidade de S\u00e3o Paulo, Av. Arlindo Bettio, 1000, 03828-000, S\u00e3o Paulo, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oliveira", 
            "givenName": "Patr\u00edcia R.", 
            "id": "sg:person.01316037670.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316037670.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centro de Ci\u00eancias Exatas e da Natureza, Universidade Federal da Para\u00edba, Cidade Universit\u00e1ria, 58051-970, Jo\u00e3o Pessoa, PB, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.411216.1", 
              "name": [
                "Centro de Ci\u00eancias Exatas e da Natureza, Universidade Federal da Para\u00edba, Cidade Universit\u00e1ria, 58051-970, Jo\u00e3o Pessoa, PB, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weber", 
            "givenName": "Karen C.", 
            "id": "sg:person.0676307313.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676307313.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Ci\u00eancias Matem\u00e1ticas e de Computa\u00e7\u00e3o, Universidade de S\u00e3o Paulo, Av. Trabalhador S\u00e3o-Carlense 400, 13560-970, S\u00e3o Carlos, SP, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Instituto de Ci\u00eancias Matem\u00e1ticas e de Computa\u00e7\u00e3o, Universidade de S\u00e3o Paulo, Av. Trabalhador S\u00e3o-Carlense 400, 13560-970, S\u00e3o Carlos, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Romero", 
            "givenName": "Roseli A. F.", 
            "id": "sg:person.015531576625.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015531576625.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidade Estadual do Sudoeste da Bahia, Rodovia BR 415, Km 03, S/N, 45700-000, Itapetinga, BA, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.412333.4", 
              "name": [
                "Universidade Estadual do Sudoeste da Bahia, Rodovia BR 415, Km 03, S/N, 45700-000, Itapetinga, BA, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Sousa", 
            "givenName": "Alexsandro G.", 
            "id": "sg:person.011541457075.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011541457075.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Qu\u00edmica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, Av. Trabalhador S\u00e3o-Carlense 400, 13560-970, S\u00e3o Carlos, SP, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Instituto de Qu\u00edmica de S\u00e3o Carlos, Universidade de S\u00e3o Paulo, Av. Trabalhador S\u00e3o-Carlense 400, 13560-970, S\u00e3o Carlos, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "da Silva", 
            "givenName": "Alb\u00e9rico B. F.", 
            "id": "sg:person.01262152063.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262152063.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrd3624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045824214", 
              "https://doi.org/10.1038/nrd3624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-81-322-1665-0_98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001361681", 
              "https://doi.org/10.1007/978-81-322-1665-0_98"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2165/00023210-200418050-00001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044282695", 
              "https://doi.org/10.2165/00023210-200418050-00001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00894-008-0332-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039575215", 
              "https://doi.org/10.1007/s00894-008-0332-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10822-005-8694-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049842937", 
              "https://doi.org/10.1007/s10822-005-8694-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11224-006-9048-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043372147", 
              "https://doi.org/10.1007/s11224-006-9048-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-10-02", 
        "datePublishedReg": "2017-10-02", 
        "description": "The treatment of neuropathic pain is very complex and there are few drugs approved for this purpose. Among the studied compounds in the literature, sigma-1 receptor antagonists have shown to be promising. In order to develop QSAR studies applied to the compounds of 1-arylpyrazole derivatives, multivariate analyses have been performed in this work using partial least square (PLS) and artificial neural network (ANN) methods. A PLS model has been obtained and validated with 45 compounds in the training set and 13 compounds in the test set (r2training = 0.761, q2 = 0.656, r2test = 0.746, MSEtest = 0.132 and MAEtest = 0.258). Additionally, multi-layer perceptron ANNs (MLP-ANNs) were employed in order to propose non-linear models trained by gradient descent with momentum backpropagation function. Based on MSEtest values, the best MLP-ANN models were combined in a MLP-ANN consensus model (MLP-ANN-CM; r2test = 0.824, MSEtest = 0.088 and MAEtest = 0.197). In the end, a general consensus model (GCM) has been obtained using PLS and MLP-ANN-CM models (r2test = 0.811, MSEtest = 0.100 and MAEtest = 0.218). Besides, the selected descriptors (GGI6, Mor23m, SRW06, H7m, MLOGP, and \u03bc) revealed important features that should be considered when one is planning new compounds of the 1-arylpyrazole class. The multivariate models proposed in this work are definitely a powerful tool for the rational drug design of new compounds for neuropathic pain treatment.Graphical abstractMain scaffold of the 1-arylpyrazole derivatives and the selected descriptors.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00894-017-3444-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1118122", 
            "issn": [
              "1610-2940", 
              "0948-5023"
            ], 
            "name": "Journal of Molecular Modeling", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "keywords": [
          "sigma-1 receptor antagonist", 
          "receptor antagonist", 
          "multivariate model", 
          "neuropathic pain treatment", 
          "neuropathic pain", 
          "pain treatment", 
          "multivariate analysis", 
          "antagonist", 
          "treatment", 
          "pain", 
          "drugs", 
          "rational drug design", 
          "new compounds", 
          "study", 
          "CM model", 
          "drug design", 
          "compounds", 
          "purpose", 
          "function", 
          "literature", 
          "model", 
          "descent", 
          "QSAR studies", 
          "derivatives", 
          "end", 
          "analysis", 
          "features", 
          "MLP-ANN model", 
          "important features", 
          "powerful tool", 
          "tool", 
          "training set", 
          "values", 
          "consensus model", 
          "scaffolds", 
          "method", 
          "test set", 
          "order", 
          "class", 
          "design", 
          "one", 
          "work", 
          "non-linear model", 
          "set", 
          "descriptors", 
          "PLS", 
          "ANNs", 
          "MLP-ANN", 
          "ANN study", 
          "artificial neural network method", 
          "network method", 
          "neural network method", 
          "PLS model", 
          "gradient descent"
        ], 
        "name": "New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists", 
        "pagination": "302", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092051905"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00894-017-3444-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28971260"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00894-017-3444-3", 
          "https://app.dimensions.ai/details/publication/pub.1092051905"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_726.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00894-017-3444-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00894-017-3444-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00894-017-3444-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00894-017-3444-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00894-017-3444-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    240 TRIPLES      21 PREDICATES      94 URIs      78 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00894-017-3444-3 schema:about N00fe4e7830554ee9bfe8edcf1f8c1df7
    2 N0fce55cdba9f4dcc9a0750052049ffed
    3 N1eb6196c9aa242c186da1a0855b6ca68
    4 N3152ec3d17f6443bb9ae8f94fc1d3785
    5 N554e86119be4401f82999eef6f53648d
    6 Nde3d5d74a39c4eddb48181b87e617102
    7 Ne8195ac1b2d64f9ab1295aa5a27fe2ae
    8 anzsrc-for:03
    9 anzsrc-for:0304
    10 anzsrc-for:0306
    11 anzsrc-for:0307
    12 schema:author Nc3c78ef958cb4610901b72d51c412720
    13 schema:citation sg:pub.10.1007/978-81-322-1665-0_98
    14 sg:pub.10.1007/s00894-008-0332-x
    15 sg:pub.10.1007/s10822-005-8694-y
    16 sg:pub.10.1007/s11224-006-9048-7
    17 sg:pub.10.1038/nrd3624
    18 sg:pub.10.2165/00023210-200418050-00001
    19 schema:datePublished 2017-10-02
    20 schema:datePublishedReg 2017-10-02
    21 schema:description The treatment of neuropathic pain is very complex and there are few drugs approved for this purpose. Among the studied compounds in the literature, sigma-1 receptor antagonists have shown to be promising. In order to develop QSAR studies applied to the compounds of 1-arylpyrazole derivatives, multivariate analyses have been performed in this work using partial least square (PLS) and artificial neural network (ANN) methods. A PLS model has been obtained and validated with 45 compounds in the training set and 13 compounds in the test set (r2training = 0.761, q2 = 0.656, r2test = 0.746, MSEtest = 0.132 and MAEtest = 0.258). Additionally, multi-layer perceptron ANNs (MLP-ANNs) were employed in order to propose non-linear models trained by gradient descent with momentum backpropagation function. Based on MSEtest values, the best MLP-ANN models were combined in a MLP-ANN consensus model (MLP-ANN-CM; r2test = 0.824, MSEtest = 0.088 and MAEtest = 0.197). In the end, a general consensus model (GCM) has been obtained using PLS and MLP-ANN-CM models (r2test = 0.811, MSEtest = 0.100 and MAEtest = 0.218). Besides, the selected descriptors (GGI6, Mor23m, SRW06, H7m, MLOGP, and μ) revealed important features that should be considered when one is planning new compounds of the 1-arylpyrazole class. The multivariate models proposed in this work are definitely a powerful tool for the rational drug design of new compounds for neuropathic pain treatment.Graphical abstractMain scaffold of the 1-arylpyrazole derivatives and the selected descriptors.
    22 schema:genre article
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N31a51015d24845c799b1816dd5afcb9d
    25 Nbd4a2ef208424a42b145cda791e14e13
    26 sg:journal.1118122
    27 schema:keywords ANN study
    28 ANNs
    29 CM model
    30 MLP-ANN
    31 MLP-ANN model
    32 PLS
    33 PLS model
    34 QSAR studies
    35 analysis
    36 antagonist
    37 artificial neural network method
    38 class
    39 compounds
    40 consensus model
    41 derivatives
    42 descent
    43 descriptors
    44 design
    45 drug design
    46 drugs
    47 end
    48 features
    49 function
    50 gradient descent
    51 important features
    52 literature
    53 method
    54 model
    55 multivariate analysis
    56 multivariate model
    57 network method
    58 neural network method
    59 neuropathic pain
    60 neuropathic pain treatment
    61 new compounds
    62 non-linear model
    63 one
    64 order
    65 pain
    66 pain treatment
    67 powerful tool
    68 purpose
    69 rational drug design
    70 receptor antagonist
    71 scaffolds
    72 set
    73 sigma-1 receptor antagonist
    74 study
    75 test set
    76 tool
    77 training set
    78 treatment
    79 values
    80 work
    81 schema:name New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists
    82 schema:pagination 302
    83 schema:productId N0f017a90db5648ceba3a3d11d5348856
    84 N4b4572b8ec534d9aa389be63dbf675b6
    85 Nc35943d46b93416e854d621346b04893
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092051905
    87 https://doi.org/10.1007/s00894-017-3444-3
    88 schema:sdDatePublished 2022-08-04T17:05
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher Ne4cbdcdeb08b4f70a1da414cb6dff4a3
    91 schema:url https://doi.org/10.1007/s00894-017-3444-3
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N00fe4e7830554ee9bfe8edcf1f8c1df7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Neural Networks, Computer
    97 rdf:type schema:DefinedTerm
    98 N0f017a90db5648ceba3a3d11d5348856 schema:name doi
    99 schema:value 10.1007/s00894-017-3444-3
    100 rdf:type schema:PropertyValue
    101 N0fce55cdba9f4dcc9a0750052049ffed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Receptors, sigma
    103 rdf:type schema:DefinedTerm
    104 N1a044b2d6b0345f6ad948a3c1b7db581 rdf:first sg:person.011541457075.62
    105 rdf:rest N916231e579d14161b7119a494624b1e2
    106 N1eb6196c9aa242c186da1a0855b6ca68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Least-Squares Analysis
    108 rdf:type schema:DefinedTerm
    109 N20657fa6862247d6ba58cd66b0b2d86a rdf:first sg:person.0676307313.17
    110 rdf:rest N5f1ed0bd02124597b31e7b3abad10194
    111 N2e105bafd2df44a8aff60b4e2691fe12 rdf:first sg:person.01316037670.46
    112 rdf:rest N20657fa6862247d6ba58cd66b0b2d86a
    113 N3152ec3d17f6443bb9ae8f94fc1d3785 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Humans
    115 rdf:type schema:DefinedTerm
    116 N31a51015d24845c799b1816dd5afcb9d schema:volumeNumber 23
    117 rdf:type schema:PublicationVolume
    118 N4b4572b8ec534d9aa389be63dbf675b6 schema:name pubmed_id
    119 schema:value 28971260
    120 rdf:type schema:PropertyValue
    121 N554e86119be4401f82999eef6f53648d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Pyrazoles
    123 rdf:type schema:DefinedTerm
    124 N5f1ed0bd02124597b31e7b3abad10194 rdf:first sg:person.015531576625.66
    125 rdf:rest N1a044b2d6b0345f6ad948a3c1b7db581
    126 N6d4302bb795c4e98b9def09a32e947a9 rdf:first Naa6ec621026840529d53726352b5ddf4
    127 rdf:rest Neee76f8993ae44509a799531f02536cd
    128 N916231e579d14161b7119a494624b1e2 rdf:first sg:person.01262152063.37
    129 rdf:rest rdf:nil
    130 Naa6ec621026840529d53726352b5ddf4 schema:affiliation grid-institutes:grid.11899.38
    131 schema:familyName Pereira
    132 schema:givenName Estevão B.
    133 rdf:type schema:Person
    134 Nb85d225c731e4ef5886b6244c7d36293 rdf:first sg:person.012263174103.31
    135 rdf:rest N6d4302bb795c4e98b9def09a32e947a9
    136 Nbd4a2ef208424a42b145cda791e14e13 schema:issueNumber 10
    137 rdf:type schema:PublicationIssue
    138 Nc35943d46b93416e854d621346b04893 schema:name dimensions_id
    139 schema:value pub.1092051905
    140 rdf:type schema:PropertyValue
    141 Nc3c78ef958cb4610901b72d51c412720 rdf:first sg:person.01150007747.75
    142 rdf:rest Nb85d225c731e4ef5886b6244c7d36293
    143 Nde3d5d74a39c4eddb48181b87e617102 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Quantitative Structure-Activity Relationship
    145 rdf:type schema:DefinedTerm
    146 Ne4cbdcdeb08b4f70a1da414cb6dff4a3 schema:name Springer Nature - SN SciGraph project
    147 rdf:type schema:Organization
    148 Ne8195ac1b2d64f9ab1295aa5a27fe2ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Neuralgia
    150 rdf:type schema:DefinedTerm
    151 Neee76f8993ae44509a799531f02536cd rdf:first sg:person.01157520053.40
    152 rdf:rest N2e105bafd2df44a8aff60b4e2691fe12
    153 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Chemical Sciences
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:0304 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Medicinal and Biomolecular Chemistry
    158 rdf:type schema:DefinedTerm
    159 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Physical Chemistry (incl. Structural)
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Theoretical and Computational Chemistry
    164 rdf:type schema:DefinedTerm
    165 sg:journal.1118122 schema:issn 0948-5023
    166 1610-2940
    167 schema:name Journal of Molecular Modeling
    168 schema:publisher Springer Nature
    169 rdf:type schema:Periodical
    170 sg:person.01150007747.75 schema:affiliation grid-institutes:grid.11899.38
    171 schema:familyName Oliveira
    172 schema:givenName Aline A.
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150007747.75
    174 rdf:type schema:Person
    175 sg:person.011541457075.62 schema:affiliation grid-institutes:grid.412333.4
    176 schema:familyName de Sousa
    177 schema:givenName Alexsandro G.
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011541457075.62
    179 rdf:type schema:Person
    180 sg:person.01157520053.40 schema:affiliation grid-institutes:grid.11899.38
    181 schema:familyName Honorio
    182 schema:givenName Kathia M.
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157520053.40
    184 rdf:type schema:Person
    185 sg:person.012263174103.31 schema:affiliation grid-institutes:grid.11899.38
    186 schema:familyName Lipinski
    187 schema:givenName Célio F.
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012263174103.31
    189 rdf:type schema:Person
    190 sg:person.01262152063.37 schema:affiliation grid-institutes:grid.11899.38
    191 schema:familyName da Silva
    192 schema:givenName Albérico B. F.
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262152063.37
    194 rdf:type schema:Person
    195 sg:person.01316037670.46 schema:affiliation grid-institutes:grid.11899.38
    196 schema:familyName Oliveira
    197 schema:givenName Patrícia R.
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316037670.46
    199 rdf:type schema:Person
    200 sg:person.015531576625.66 schema:affiliation grid-institutes:grid.11899.38
    201 schema:familyName Romero
    202 schema:givenName Roseli A. F.
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015531576625.66
    204 rdf:type schema:Person
    205 sg:person.0676307313.17 schema:affiliation grid-institutes:grid.411216.1
    206 schema:familyName Weber
    207 schema:givenName Karen C.
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676307313.17
    209 rdf:type schema:Person
    210 sg:pub.10.1007/978-81-322-1665-0_98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001361681
    211 https://doi.org/10.1007/978-81-322-1665-0_98
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s00894-008-0332-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039575215
    214 https://doi.org/10.1007/s00894-008-0332-x
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s10822-005-8694-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049842937
    217 https://doi.org/10.1007/s10822-005-8694-y
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s11224-006-9048-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043372147
    220 https://doi.org/10.1007/s11224-006-9048-7
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nrd3624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045824214
    223 https://doi.org/10.1038/nrd3624
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.2165/00023210-200418050-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044282695
    226 https://doi.org/10.2165/00023210-200418050-00001
    227 rdf:type schema:CreativeWork
    228 grid-institutes:grid.11899.38 schema:alternateName Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio, 1000, 03828-000, São Paulo, SP, Brazil
    229 Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, 13560-970, São Carlos, SP, Brazil
    230 Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, 13560-970, São Carlos, SP, Brazil
    231 schema:name Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio, 1000, 03828-000, São Paulo, SP, Brazil
    232 Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, 13560-970, São Carlos, SP, Brazil
    233 Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, 13560-970, São Carlos, SP, Brazil
    234 rdf:type schema:Organization
    235 grid-institutes:grid.411216.1 schema:alternateName Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Cidade Universitária, 58051-970, João Pessoa, PB, Brazil
    236 schema:name Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Cidade Universitária, 58051-970, João Pessoa, PB, Brazil
    237 rdf:type schema:Organization
    238 grid-institutes:grid.412333.4 schema:alternateName Universidade Estadual do Sudoeste da Bahia, Rodovia BR 415, Km 03, S/N, 45700-000, Itapetinga, BA, Brazil
    239 schema:name Universidade Estadual do Sudoeste da Bahia, Rodovia BR 415, Km 03, S/N, 45700-000, Itapetinga, BA, Brazil
    240 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...