Monte Carlo simulation of intercalated carbon nanotubes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-01

AUTHORS

Oleksiy Mykhailenko, Denis Matsui, Yuriy Prylutskyy, Francois Le Normand, Peter Eklund, Peter Scharff

ABSTRACT

Monte Carlo simulations of the single- and double-walled carbon nanotubes (CNT) intercalated with different metals have been carried out. The interrelation between the length of a CNT, the number and type of metal atoms has also been established. This research is aimed at studying intercalated systems based on CNTs and d-metals such as Fe and Co. Factors influencing the stability of these composites have been determined theoretically by the Monte Carlo method with the Tersoff potential. The modeling of CNTs intercalated with metals by the Monte Carlo method has proved that there is a correlation between the length of a CNT and the number of endo-atoms of specific type. Thus, in the case of a metallic CNT (9,0) with length 17 bands (3.60 nm), in contrast to Co atoms, Fe atoms are extruded out of the CNT if the number of atoms in the CNT is not less than eight. Thus, this paper shows that a CNT of a certain size can be intercalated with no more than eight Fe atoms. The systems investigated are stabilized by coordination of 3d-atoms close to the CNT wall with a radius-vector of (0.18-0.20) nm. Another characteristic feature is that, within the temperature range of (400-700) K, small systems exhibit ground-state stabilization which is not characteristic of the higher ones. The behavior of Fe and Co endo-atoms between the walls of a double-walled carbon nanotube (DW CNT) is explained by a dominating van der Waals interaction between the Co atoms themselves, which is not true for the Fe atoms. More... »

PAGES

283-287

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00894-006-0129-8

DOI

http://dx.doi.org/10.1007/s00894-006-0129-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048735390

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17033783


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cobalt", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intercalating Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Manufactured Materials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotubes, Carbon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Aviation University", 
          "id": "https://www.grid.ac/institutes/grid.38199.3a", 
          "name": [
            "Department of Chemistry and Chemical Technology, National Aviation University, Prospekt Kosmonavta Komarova, 1, 03058, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mykhailenko", 
        "givenName": "Oleksiy", 
        "id": "sg:person.01273517417.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273517417.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, Kyiv Taras Shevchenko National University, Volodymyrska Str., 64, 01033, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsui", 
        "givenName": "Denis", 
        "id": "sg:person.01341632617.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341632617.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Taras Shevchenko National University of Kyiv", 
          "id": "https://www.grid.ac/institutes/grid.34555.32", 
          "name": [
            "Department of Biophysics, Kyiv Taras Shevchenko National University, Volodymyrska Str., 64, 01033, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prylutskyy", 
        "givenName": "Yuriy", 
        "id": "sg:person.0761452727.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761452727.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Groupe Surfaces-Interfaces, Institut de Physique et Chimie des Mat\u00e9riaux, Bat 69, 23 rue du Loess, BP 43, 67037, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Normand", 
        "givenName": "Francois", 
        "id": "sg:person.011463213471.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011463213471.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "104 Davey Laboratory, Penn State University, 16802-6300, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eklund", 
        "givenName": "Peter", 
        "id": "sg:person.01270650417.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270650417.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ilmenau University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6553.5", 
          "name": [
            "Institute of Physics, TU Ilmenau, 98684, Ilmenau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scharff", 
        "givenName": "Peter", 
        "id": "sg:person.0616413475.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616413475.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0168-583x(92)96012-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000247122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(92)96012-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000247122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0928-4931(01)00308-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036279132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.5566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.5566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549690"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "Monte Carlo simulations of the single- and double-walled carbon nanotubes (CNT) intercalated with different metals have been carried out. The interrelation between the length of a CNT, the number and type of metal atoms has also been established. This research is aimed at studying intercalated systems based on CNTs and d-metals such as Fe and Co. Factors influencing the stability of these composites have been determined theoretically by the Monte Carlo method with the Tersoff potential. The modeling of CNTs intercalated with metals by the Monte Carlo method has proved that there is a correlation between the length of a CNT and the number of endo-atoms of specific type. Thus, in the case of a metallic CNT (9,0) with length 17 bands (3.60 nm), in contrast to Co atoms, Fe atoms are extruded out of the CNT if the number of atoms in the CNT is not less than eight. Thus, this paper shows that a CNT of a certain size can be intercalated with no more than eight Fe atoms. The systems investigated are stabilized by coordination of 3d-atoms close to the CNT wall with a radius-vector of (0.18-0.20) nm. Another characteristic feature is that, within the temperature range of (400-700) K, small systems exhibit ground-state stabilization which is not characteristic of the higher ones. The behavior of Fe and Co endo-atoms between the walls of a double-walled carbon nanotube (DW CNT) is explained by a dominating van der Waals interaction between the Co atoms themselves, which is not true for the Fe atoms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00894-006-0129-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1118122", 
        "issn": [
          "1610-2940", 
          "0948-5023"
        ], 
        "name": "Journal of Molecular Modeling", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Monte Carlo simulation of intercalated carbon nanotubes", 
    "pagination": "283-287", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e82aab5a786363df3a57ca982823cce0f03e1de6135e15d1743ac8198ba4f64a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17033783"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9806569"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00894-006-0129-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048735390"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00894-006-0129-8", 
      "https://app.dimensions.ai/details/publication/pub.1048735390"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000491.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00894-006-0129-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00894-006-0129-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00894-006-0129-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00894-006-0129-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00894-006-0129-8'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      43 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00894-006-0129-8 schema:about N3a85f507b55f43ab912f27f4b7c99fc9
2 N4aa5bbbb14d3439fa1e6eb70697c1d79
3 N53f66c0ffae74ef5b879a811e4067d98
4 N61478a50a9e548b299d5b0b9e5f81fc5
5 N61705610347f40dfac463860415d969e
6 N73e5d836f6724b9185509fb2d539697f
7 N803237febcbe4254b965b6bfcb184bc8
8 Nc537476ed2e94ccab04ed8ffa094634b
9 Nc78a12c3f25142ada88c308e75287ffc
10 Ncb11d49845584905b277eeefc1b3f8b1
11 Ncea524707cdd494bb5440499d52d9e91
12 anzsrc-for:03
13 anzsrc-for:0306
14 schema:author N9117b185e2904c728314ec03a0587b58
15 schema:citation https://doi.org/10.1016/0168-583x(92)96012-n
16 https://doi.org/10.1016/s0928-4931(01)00308-3
17 https://doi.org/10.1103/physrevb.39.5566
18 schema:datePublished 2007-01
19 schema:datePublishedReg 2007-01-01
20 schema:description Monte Carlo simulations of the single- and double-walled carbon nanotubes (CNT) intercalated with different metals have been carried out. The interrelation between the length of a CNT, the number and type of metal atoms has also been established. This research is aimed at studying intercalated systems based on CNTs and d-metals such as Fe and Co. Factors influencing the stability of these composites have been determined theoretically by the Monte Carlo method with the Tersoff potential. The modeling of CNTs intercalated with metals by the Monte Carlo method has proved that there is a correlation between the length of a CNT and the number of endo-atoms of specific type. Thus, in the case of a metallic CNT (9,0) with length 17 bands (3.60 nm), in contrast to Co atoms, Fe atoms are extruded out of the CNT if the number of atoms in the CNT is not less than eight. Thus, this paper shows that a CNT of a certain size can be intercalated with no more than eight Fe atoms. The systems investigated are stabilized by coordination of 3d-atoms close to the CNT wall with a radius-vector of (0.18-0.20) nm. Another characteristic feature is that, within the temperature range of (400-700) K, small systems exhibit ground-state stabilization which is not characteristic of the higher ones. The behavior of Fe and Co endo-atoms between the walls of a double-walled carbon nanotube (DW CNT) is explained by a dominating van der Waals interaction between the Co atoms themselves, which is not true for the Fe atoms.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N41de4341b5384231b0c018cb0dcef7f0
25 N8de10e1c49d14743afbd946c6dd29cd4
26 sg:journal.1118122
27 schema:name Monte Carlo simulation of intercalated carbon nanotubes
28 schema:pagination 283-287
29 schema:productId N0be950e646924ee8ab134aa2f03ea0ce
30 N81047429d72c48e8a9a436ff93caec17
31 Nb5ea626cd9d941c4a2912e81f2479a98
32 Ndecd745a40aa4543926aa21f5148cd0b
33 Nfaffefc49c8e43218fb676b06071d1d8
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048735390
35 https://doi.org/10.1007/s00894-006-0129-8
36 schema:sdDatePublished 2019-04-10T13:09
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N58fe872e9a524addac497ba0b513d261
39 schema:url http://link.springer.com/10.1007/s00894-006-0129-8
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N0be950e646924ee8ab134aa2f03ea0ce schema:name readcube_id
44 schema:value e82aab5a786363df3a57ca982823cce0f03e1de6135e15d1743ac8198ba4f64a
45 rdf:type schema:PropertyValue
46 N2a87f806d66b4be3a896d6cd5211e23e rdf:first sg:person.01270650417.51
47 rdf:rest Ncd623c0a8fad40228b8c46fde96075f7
48 N3a2c8b32f15f4d5f87d43d7a3f0da2cb rdf:first sg:person.01341632617.57
49 rdf:rest Na687f62dca2a4cd4975ba8e5fdb0a560
50 N3a85f507b55f43ab912f27f4b7c99fc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Manufactured Materials
52 rdf:type schema:DefinedTerm
53 N41de4341b5384231b0c018cb0dcef7f0 schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 N4aa5bbbb14d3439fa1e6eb70697c1d79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Models, Theoretical
57 rdf:type schema:DefinedTerm
58 N53f66c0ffae74ef5b879a811e4067d98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Iron
60 rdf:type schema:DefinedTerm
61 N58fe872e9a524addac497ba0b513d261 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N5c34138f91a94f2c8b946ca57cab580d rdf:first sg:person.011463213471.58
64 rdf:rest N2a87f806d66b4be3a896d6cd5211e23e
65 N61478a50a9e548b299d5b0b9e5f81fc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Nanotubes, Carbon
67 rdf:type schema:DefinedTerm
68 N61705610347f40dfac463860415d969e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Models, Molecular
70 rdf:type schema:DefinedTerm
71 N73e5d836f6724b9185509fb2d539697f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Temperature
73 rdf:type schema:DefinedTerm
74 N803237febcbe4254b965b6bfcb184bc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Intercalating Agents
76 rdf:type schema:DefinedTerm
77 N81047429d72c48e8a9a436ff93caec17 schema:name nlm_unique_id
78 schema:value 9806569
79 rdf:type schema:PropertyValue
80 N849115fd3a554d72a1ad8e58b30edf39 schema:name Department of Physics, Kyiv Taras Shevchenko National University, Volodymyrska Str., 64, 01033, Kyiv, Ukraine
81 rdf:type schema:Organization
82 N8de10e1c49d14743afbd946c6dd29cd4 schema:volumeNumber 13
83 rdf:type schema:PublicationVolume
84 N9117b185e2904c728314ec03a0587b58 rdf:first sg:person.01273517417.30
85 rdf:rest N3a2c8b32f15f4d5f87d43d7a3f0da2cb
86 Na687f62dca2a4cd4975ba8e5fdb0a560 rdf:first sg:person.0761452727.99
87 rdf:rest N5c34138f91a94f2c8b946ca57cab580d
88 Nb5ea626cd9d941c4a2912e81f2479a98 schema:name pubmed_id
89 schema:value 17033783
90 rdf:type schema:PropertyValue
91 Nc537476ed2e94ccab04ed8ffa094634b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Nanotechnology
93 rdf:type schema:DefinedTerm
94 Nc78a12c3f25142ada88c308e75287ffc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Models, Chemical
96 rdf:type schema:DefinedTerm
97 Ncb11d49845584905b277eeefc1b3f8b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Cobalt
99 rdf:type schema:DefinedTerm
100 Ncd623c0a8fad40228b8c46fde96075f7 rdf:first sg:person.0616413475.06
101 rdf:rest rdf:nil
102 Ncea524707cdd494bb5440499d52d9e91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Monte Carlo Method
104 rdf:type schema:DefinedTerm
105 Nd0a20629dce642e09a36e1e3442c3f41 schema:name Groupe Surfaces-Interfaces, Institut de Physique et Chimie des Matériaux, Bat 69, 23 rue du Loess, BP 43, 67037, Strasbourg, France
106 rdf:type schema:Organization
107 Ndecd745a40aa4543926aa21f5148cd0b schema:name doi
108 schema:value 10.1007/s00894-006-0129-8
109 rdf:type schema:PropertyValue
110 Nfaffefc49c8e43218fb676b06071d1d8 schema:name dimensions_id
111 schema:value pub.1048735390
112 rdf:type schema:PropertyValue
113 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
114 schema:name Chemical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
117 schema:name Physical Chemistry (incl. Structural)
118 rdf:type schema:DefinedTerm
119 sg:journal.1118122 schema:issn 0948-5023
120 1610-2940
121 schema:name Journal of Molecular Modeling
122 rdf:type schema:Periodical
123 sg:person.011463213471.58 schema:affiliation Nd0a20629dce642e09a36e1e3442c3f41
124 schema:familyName Le Normand
125 schema:givenName Francois
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011463213471.58
127 rdf:type schema:Person
128 sg:person.01270650417.51 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
129 schema:familyName Eklund
130 schema:givenName Peter
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270650417.51
132 rdf:type schema:Person
133 sg:person.01273517417.30 schema:affiliation https://www.grid.ac/institutes/grid.38199.3a
134 schema:familyName Mykhailenko
135 schema:givenName Oleksiy
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273517417.30
137 rdf:type schema:Person
138 sg:person.01341632617.57 schema:affiliation N849115fd3a554d72a1ad8e58b30edf39
139 schema:familyName Matsui
140 schema:givenName Denis
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341632617.57
142 rdf:type schema:Person
143 sg:person.0616413475.06 schema:affiliation https://www.grid.ac/institutes/grid.6553.5
144 schema:familyName Scharff
145 schema:givenName Peter
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616413475.06
147 rdf:type schema:Person
148 sg:person.0761452727.99 schema:affiliation https://www.grid.ac/institutes/grid.34555.32
149 schema:familyName Prylutskyy
150 schema:givenName Yuriy
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761452727.99
152 rdf:type schema:Person
153 https://doi.org/10.1016/0168-583x(92)96012-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1000247122
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0928-4931(01)00308-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036279132
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.39.5566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060549690
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
160 schema:name 104 Davey Laboratory, Penn State University, 16802-6300, University Park, PA, USA
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.34555.32 schema:alternateName Taras Shevchenko National University of Kyiv
163 schema:name Department of Biophysics, Kyiv Taras Shevchenko National University, Volodymyrska Str., 64, 01033, Kyiv, Ukraine
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.38199.3a schema:alternateName National Aviation University
166 schema:name Department of Chemistry and Chemical Technology, National Aviation University, Prospekt Kosmonavta Komarova, 1, 03058, Kyiv, Ukraine
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.6553.5 schema:alternateName Ilmenau University of Technology
169 schema:name Institute of Physics, TU Ilmenau, 98684, Ilmenau, Germany
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...