Methods for array tomography with correlative light and electron microscopy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Taro Koike, Hisao Yamada

ABSTRACT

The three-dimensional ultra-structure is the comprehensive structure that cannot be observed from a two-dimensional electron micrograph. Array tomography is one method for three-dimensional electron microscopy. In this method, to obtain consecutive cross sections of tissue, connected consecutive sections of a resin block are mounted on a flat substrate, and these are observed with scanning electron microscopy. Although array tomography requires some bothersome manual procedures to prepare specimens, a recent study has introduced some techniques to ease specimen preparation. In addition, array tomography has some advantages compared with other three-dimensional electron microscopy techniques. For example, sections on the substrate are stored semi-eternally, so they can be observed at different magnifications. Furthermore, various staining methods, including post-embedding immunocytochemistry, can be adopted. In the present review, the preparation of specimens for array tomography, including ribbon collection and the staining method, and the adaptability for correlative light and electron microscopy are discussed. More... »

PAGES

8-14

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00795-018-0194-y

DOI

http://dx.doi.org/10.1007/s00795-018-0194-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104333914

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29855715


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kansai Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410783.9", 
          "name": [
            "Department of Anatomy and Cell Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koike", 
        "givenName": "Taro", 
        "id": "sg:person.01143402042.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143402042.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kansai Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410783.9", 
          "name": [
            "Department of Anatomy and Cell Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Hisao", 
        "id": "sg:person.0751640414.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751640414.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0165-0270(02)00166-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000315831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1369/0022155412473757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000741333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1369/0022155412473757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000741333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1121558109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001731484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncir.2014.00068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002285119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jmicro/dfv360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004300732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002215540104900301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005145540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002215540104900301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005145540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2010.09.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005637620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0020329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007086000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnana.2010.00024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007193830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.22734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010907448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1986.0056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012123360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012798279", 
          "https://doi.org/10.1038/nature09818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0124581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013646517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0124581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013646517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.20679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015358929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.20679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015358929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jmicro/dfv042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016291659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1679/aohc1950.31.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016656692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2011.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019436628", 
          "https://doi.org/10.1038/nprot.2011.439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2011.00050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019857754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jmi.12223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030706647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60761-783-9_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035686086", 
          "https://doi.org/10.1007/978-1-60761-783-9_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60761-783-9_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035686086", 
          "https://doi.org/10.1007/978-1-60761-783-9_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0035172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040290658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12860-016-0122-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040418507", 
          "https://doi.org/10.1186/s12860-016-0122-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12860-016-0122-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040418507", 
          "https://doi.org/10.1186/s12860-016-0122-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1679/aohc1950.39.183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041898401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043176223", 
          "https://doi.org/10.1038/nmeth.3400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043509784", 
          "https://doi.org/10.1038/nmeth.2072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2016.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044509966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2013.06.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045551612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-420138-5.00015-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045992362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0038011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046232493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0811698106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046908009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0134644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048295317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.3189-07.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050515662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2007.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053245878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.4274-14.2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053328814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1431927606066268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054925965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1431927615007175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054929454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1369/0022155415609099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065266418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1369/0022155415609099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065266418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000113850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078590882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2220/biomedres.38.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091100446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1267/ahc.17013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092285377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1267/ahc.17013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092285377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2220/biomedres.38.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092344770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1267/ahc.17020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101134391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1267/ahc.17020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101134391"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "The three-dimensional ultra-structure is the comprehensive structure that cannot be observed from a two-dimensional electron micrograph. Array tomography is one method for three-dimensional electron microscopy. In this method, to obtain consecutive cross sections of tissue, connected consecutive sections of a resin block are mounted on a flat substrate, and these are observed with scanning electron microscopy. Although array tomography requires some bothersome manual procedures to prepare specimens, a recent study has introduced some techniques to ease specimen preparation. In addition, array tomography has some advantages compared with other three-dimensional electron microscopy techniques. For example, sections on the substrate are stored semi-eternally, so they can be observed at different magnifications. Furthermore, various staining methods, including post-embedding immunocytochemistry, can be adopted. In the present review, the preparation of specimens for array tomography, including ribbon collection and the staining method, and the adaptability for correlative light and electron microscopy are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00795-018-0194-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5911821", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1295024", 
        "issn": [
          "1860-1480", 
          "1437-773X"
        ], 
        "name": "Medical Molecular Morphology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Methods for array tomography with correlative light and electron microscopy", 
    "pagination": "8-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d49ccc0ddba7f741b6bd30152874c408fb90512539299255739baacafa2d2e8a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29855715"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101239023"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00795-018-0194-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104333914"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00795-018-0194-y", 
      "https://app.dimensions.ai/details/publication/pub.1104333914"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77557_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00795-018-0194-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00795-018-0194-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00795-018-0194-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00795-018-0194-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00795-018-0194-y'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00795-018-0194-y schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N076b1cde67e44755b4d6b30bf68d7a78
4 schema:citation sg:pub.10.1007/978-1-60761-783-9_19
5 sg:pub.10.1038/nature09818
6 sg:pub.10.1038/nmeth.2072
7 sg:pub.10.1038/nmeth.3400
8 sg:pub.10.1038/nprot.2011.439
9 sg:pub.10.1186/s12860-016-0122-8
10 https://doi.org/10.1002/cne.20679
11 https://doi.org/10.1002/cne.22734
12 https://doi.org/10.1016/b978-0-12-420138-5.00015-x
13 https://doi.org/10.1016/j.cell.2013.06.031
14 https://doi.org/10.1016/j.molcel.2016.10.009
15 https://doi.org/10.1016/j.neuron.2007.06.014
16 https://doi.org/10.1016/j.neuron.2010.09.024
17 https://doi.org/10.1016/s0165-0270(02)00166-8
18 https://doi.org/10.1017/s1431927606066268
19 https://doi.org/10.1017/s1431927615007175
20 https://doi.org/10.1073/pnas.0811698106
21 https://doi.org/10.1073/pnas.1121558109
22 https://doi.org/10.1093/jmicro/dfv042
23 https://doi.org/10.1093/jmicro/dfv360
24 https://doi.org/10.1098/rstb.1986.0056
25 https://doi.org/10.1111/jmi.12223
26 https://doi.org/10.1177/002215540104900301
27 https://doi.org/10.1267/ahc.17013
28 https://doi.org/10.1267/ahc.17020
29 https://doi.org/10.1369/0022155412473757
30 https://doi.org/10.1369/0022155415609099
31 https://doi.org/10.1371/journal.pbio.0020329
32 https://doi.org/10.1371/journal.pone.0035172
33 https://doi.org/10.1371/journal.pone.0038011
34 https://doi.org/10.1371/journal.pone.0124581
35 https://doi.org/10.1371/journal.pone.0134644
36 https://doi.org/10.1523/jneurosci.3189-07.2008
37 https://doi.org/10.1523/jneurosci.4274-14.2015
38 https://doi.org/10.1679/aohc1950.31.371
39 https://doi.org/10.1679/aohc1950.39.183
40 https://doi.org/10.2144/000113850
41 https://doi.org/10.2220/biomedres.38.239
42 https://doi.org/10.2220/biomedres.38.285
43 https://doi.org/10.3389/fnana.2010.00024
44 https://doi.org/10.3389/fncir.2014.00068
45 https://doi.org/10.3389/fnins.2011.00050
46 schema:datePublished 2019-03
47 schema:datePublishedReg 2019-03-01
48 schema:description The three-dimensional ultra-structure is the comprehensive structure that cannot be observed from a two-dimensional electron micrograph. Array tomography is one method for three-dimensional electron microscopy. In this method, to obtain consecutive cross sections of tissue, connected consecutive sections of a resin block are mounted on a flat substrate, and these are observed with scanning electron microscopy. Although array tomography requires some bothersome manual procedures to prepare specimens, a recent study has introduced some techniques to ease specimen preparation. In addition, array tomography has some advantages compared with other three-dimensional electron microscopy techniques. For example, sections on the substrate are stored semi-eternally, so they can be observed at different magnifications. Furthermore, various staining methods, including post-embedding immunocytochemistry, can be adopted. In the present review, the preparation of specimens for array tomography, including ribbon collection and the staining method, and the adaptability for correlative light and electron microscopy are discussed.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N5655af2e102442c09c46e4fba25f8c65
53 N694820be91d7404dbcd2845dee4582d6
54 sg:journal.1295024
55 schema:name Methods for array tomography with correlative light and electron microscopy
56 schema:pagination 8-14
57 schema:productId N18c3927d7653438ea44b34b77669c0ad
58 N26455e9eb83e40f2a343a7f03b110cda
59 N739cd5f0240a4c63bde41ee3d460b736
60 N7ec554169aeb4b3f9218da5f98ac399a
61 Nafc474460113409da8d42638e660813a
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104333914
63 https://doi.org/10.1007/s00795-018-0194-y
64 schema:sdDatePublished 2019-04-11T10:49
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N4a3647b3b35443f39c83a5d4ed789c48
67 schema:url https://link.springer.com/10.1007%2Fs00795-018-0194-y
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N076b1cde67e44755b4d6b30bf68d7a78 rdf:first sg:person.01143402042.32
72 rdf:rest N37bea9e0cc544cf59621f7cba71eb189
73 N18c3927d7653438ea44b34b77669c0ad schema:name dimensions_id
74 schema:value pub.1104333914
75 rdf:type schema:PropertyValue
76 N26455e9eb83e40f2a343a7f03b110cda schema:name nlm_unique_id
77 schema:value 101239023
78 rdf:type schema:PropertyValue
79 N37bea9e0cc544cf59621f7cba71eb189 rdf:first sg:person.0751640414.90
80 rdf:rest rdf:nil
81 N4a3647b3b35443f39c83a5d4ed789c48 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N5655af2e102442c09c46e4fba25f8c65 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N694820be91d7404dbcd2845dee4582d6 schema:volumeNumber 52
86 rdf:type schema:PublicationVolume
87 N739cd5f0240a4c63bde41ee3d460b736 schema:name readcube_id
88 schema:value d49ccc0ddba7f741b6bd30152874c408fb90512539299255739baacafa2d2e8a
89 rdf:type schema:PropertyValue
90 N7ec554169aeb4b3f9218da5f98ac399a schema:name pubmed_id
91 schema:value 29855715
92 rdf:type schema:PropertyValue
93 Nafc474460113409da8d42638e660813a schema:name doi
94 schema:value 10.1007/s00795-018-0194-y
95 rdf:type schema:PropertyValue
96 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
100 schema:name Other Physical Sciences
101 rdf:type schema:DefinedTerm
102 sg:grant.5911821 http://pending.schema.org/fundedItem sg:pub.10.1007/s00795-018-0194-y
103 rdf:type schema:MonetaryGrant
104 sg:journal.1295024 schema:issn 1437-773X
105 1860-1480
106 schema:name Medical Molecular Morphology
107 rdf:type schema:Periodical
108 sg:person.01143402042.32 schema:affiliation https://www.grid.ac/institutes/grid.410783.9
109 schema:familyName Koike
110 schema:givenName Taro
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143402042.32
112 rdf:type schema:Person
113 sg:person.0751640414.90 schema:affiliation https://www.grid.ac/institutes/grid.410783.9
114 schema:familyName Yamada
115 schema:givenName Hisao
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751640414.90
117 rdf:type schema:Person
118 sg:pub.10.1007/978-1-60761-783-9_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035686086
119 https://doi.org/10.1007/978-1-60761-783-9_19
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature09818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012798279
122 https://doi.org/10.1038/nature09818
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nmeth.2072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043509784
125 https://doi.org/10.1038/nmeth.2072
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nmeth.3400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043176223
128 https://doi.org/10.1038/nmeth.3400
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nprot.2011.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019436628
131 https://doi.org/10.1038/nprot.2011.439
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/s12860-016-0122-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040418507
134 https://doi.org/10.1186/s12860-016-0122-8
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/cne.20679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015358929
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/cne.22734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010907448
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/b978-0-12-420138-5.00015-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045992362
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.cell.2013.06.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045551612
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.molcel.2016.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044509966
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.neuron.2007.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053245878
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.neuron.2010.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005637620
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0165-0270(02)00166-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000315831
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1017/s1431927606066268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054925965
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1017/s1431927615007175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054929454
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1073/pnas.0811698106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046908009
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1073/pnas.1121558109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001731484
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/jmicro/dfv042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016291659
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/jmicro/dfv360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004300732
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1098/rstb.1986.0056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012123360
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1111/jmi.12223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030706647
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1177/002215540104900301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005145540
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1267/ahc.17013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092285377
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1267/ahc.17020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101134391
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1369/0022155412473757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000741333
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1369/0022155415609099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065266418
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1371/journal.pbio.0020329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007086000
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1371/journal.pone.0035172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040290658
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1371/journal.pone.0038011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046232493
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1371/journal.pone.0124581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013646517
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1371/journal.pone.0134644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048295317
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1523/jneurosci.3189-07.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050515662
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1523/jneurosci.4274-14.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053328814
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1679/aohc1950.31.371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016656692
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1679/aohc1950.39.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041898401
195 rdf:type schema:CreativeWork
196 https://doi.org/10.2144/000113850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078590882
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2220/biomedres.38.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091100446
199 rdf:type schema:CreativeWork
200 https://doi.org/10.2220/biomedres.38.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092344770
201 rdf:type schema:CreativeWork
202 https://doi.org/10.3389/fnana.2010.00024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007193830
203 rdf:type schema:CreativeWork
204 https://doi.org/10.3389/fncir.2014.00068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002285119
205 rdf:type schema:CreativeWork
206 https://doi.org/10.3389/fnins.2011.00050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019857754
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.410783.9 schema:alternateName Kansai Medical University
209 schema:name Department of Anatomy and Cell Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...