Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Vitaly V. Kadnikov, Andrey V. Mardanov, Alexey V. Beletsky, Olga V. Karnachuk, Nikolai V. Ravin

ABSTRACT

Bacteria of candidate phylum OP8 (Aminicenantes) have been identified in various terrestrial and marine ecosystems as a result of molecular analysis of microbial communities. So far, none of the representatives of Aminicenantes have been isolated in a pure culture. We assembled the near-complete genome of a member of Aminicenantes from the metagenome of the 2-km-deep subsurface thermal aquifer in Western Siberia and used genomic data to analyze the metabolic pathways of this bacterium and its ecological role. This bacterium, designated BY38, was predicted to be rod shaped, it lacks flagellar machinery but twitching motility is encoded. Analysis of the BY38 genome revealed a variety of glycosyl hydrolases that can enable utilization of carbohydrates, including chitin, cellulose, starch, mannose, galactose, fructose, fucose, rhamnose, maltose and arabinose. The reconstructed central metabolic pathways suggested that Aminicenantes bacterium BY38 is an anaerobic organotroph capable of fermenting carbohydrates and proteinaceous substrates and performing anaerobic respiration with nitrite. In the deep subsurface aquifer Aminicenantes probably act as destructors of buried organic matter and produce hydrogen and acetate. Based on phylogenetic and genomic analyses, the novel bacterium is proposed to be classified as Candidatus Saccharicenans subterraneum. More... »

PAGES

1-12

References to SciGraph publications

  • 2010-09. Formate-driven growth coupled with H2 production in NATURE
  • 2016-12. Measurement of bacterial replication rates in microbial communities in NATURE BIOTECHNOLOGY
  • 2016-03. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival in THE ISME JOURNAL
  • 2013-06. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes in NATURE BIOTECHNOLOGY
  • 2014-11. Binning metagenomic contigs by coverage and composition in NATURE METHODS
  • 2017-11. Uncultivated microbes in need of their own taxonomy in THE ISME JOURNAL
  • 2015-07. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes in SCIENTIFIC REPORTS
  • 2018-08-27. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life in NATURE BIOTECHNOLOGY
  • 2016-03. A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust in THE ISME JOURNAL
  • 2016-02. Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics in THE ISME JOURNAL
  • 2013-12. Genome sequence-based species delimitation with confidence intervals and improved distance functions in BMC BIOINFORMATICS
  • 2013-07. Insights into the phylogeny and coding potential of microbial dark matter in NATURE
  • 2016-10-24. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system in NATURE COMMUNICATIONS
  • 2017-08. Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments in THE ISME JOURNAL
  • 2017-08-08. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00792-018-01073-5

    DOI

    http://dx.doi.org/10.1007/s00792-018-01073-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111039258

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30600356


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp 33-2, 119071, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kadnikov", 
            "givenName": "Vitaly V.", 
            "id": "sg:person.0716605534.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716605534.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp 33-2, 119071, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mardanov", 
            "givenName": "Andrey V.", 
            "id": "sg:person.01354632245.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354632245.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp 33-2, 119071, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beletsky", 
            "givenName": "Alexey V.", 
            "id": "sg:person.0721735213.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721735213.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tomsk State University", 
              "id": "https://www.grid.ac/institutes/grid.77602.34", 
              "name": [
                "Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karnachuk", 
            "givenName": "Olga V.", 
            "id": "sg:person.01047715142.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047715142.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp 33-2, 119071, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ravin", 
            "givenName": "Nikolai V.", 
            "id": "sg:person.0770105301.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770105301.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000848409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/md9040645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001560217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr1178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001860160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002123234", 
              "https://doi.org/10.1038/ismej.2015.153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.01774-14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002179889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1462-2920.13362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003096235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.183012.114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006080321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010652073", 
              "https://doi.org/10.1038/nbt.2579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012047667", 
              "https://doi.org/10.1038/ismej.2015.150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0092139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012647120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.186072.114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015107573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tim.2007.10.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015178856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015326716", 
              "https://doi.org/10.1038/nature09375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015326716", 
              "https://doi.org/10.1038/nature09375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015326716", 
              "https://doi.org/10.1038/nature09375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016754105", 
              "https://doi.org/10.1186/1471-2105-14-60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016754105", 
              "https://doi.org/10.1186/1471-2105-14-60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks1219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017730157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.97", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019204391", 
              "https://doi.org/10.1038/ismej.2015.97"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019299949", 
              "https://doi.org/10.1038/nature12352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020940033", 
              "https://doi.org/10.1038/nbt.3704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0141-0229(98)00171-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024924821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.00718-09", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028415851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1462-2920.12284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029123745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep08365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034123211", 
              "https://doi.org/10.1038/srep08365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034514160", 
              "https://doi.org/10.1038/nmeth.3103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035143030", 
              "https://doi.org/10.1038/ncomms13219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.01541-09", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038354310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2016.00731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040077111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471142727.mb0204s56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040923428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471142727.mb0204s56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040923428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.01412-07", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042658875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1462-2920.12093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045678456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/sysbio/syq010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046004748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7717/peerj.1319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047354329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14806/ej.17.1.200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067372670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083201581", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2017.39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128192", 
              "https://doi.org/10.1038/ismej.2017.39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2017.113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090850973", 
              "https://doi.org/10.1038/ismej.2017.113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/femsec/fiy152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106026724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.4229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106359945", 
              "https://doi.org/10.1038/nbt.4229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.4229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106359945", 
              "https://doi.org/10.1038/nbt.4229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.4229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106359945", 
              "https://doi.org/10.1038/nbt.4229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7287/peerj.preprints.1900v1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107335254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7287/peerj.preprints.1900v1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107335254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7287/peerj.preprints.1900v1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107335254"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "Bacteria of candidate phylum OP8 (Aminicenantes) have been identified in various terrestrial and marine ecosystems as a result of molecular analysis of microbial communities. So far, none of the representatives of Aminicenantes have been isolated in a pure culture. We assembled the near-complete genome of a member of Aminicenantes from the metagenome of the 2-km-deep subsurface thermal aquifer in Western Siberia and used genomic data to analyze the metabolic pathways of this bacterium and its ecological role. This bacterium, designated BY38, was predicted to be rod shaped, it lacks flagellar machinery but twitching motility is encoded. Analysis of the BY38 genome revealed a variety of glycosyl hydrolases that can enable utilization of carbohydrates, including chitin, cellulose, starch, mannose, galactose, fructose, fucose, rhamnose, maltose and arabinose. The reconstructed central metabolic pathways suggested that Aminicenantes bacterium BY38 is an anaerobic organotroph capable of fermenting carbohydrates and proteinaceous substrates and performing anaerobic respiration with nitrite. In the deep subsurface aquifer Aminicenantes probably act as destructors of buried organic matter and produce hydrogen and acetate. Based on phylogenetic and genomic analyses, the novel bacterium is proposed to be classified as Candidatus Saccharicenans subterraneum.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00792-018-01073-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4896984", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1116821", 
            "issn": [
              "1431-0651", 
              "1433-4909"
            ], 
            "name": "Extremophiles", 
            "type": "Periodical"
          }
        ], 
        "name": "Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "73802ba8626963edd093711cfdc1bc348fb347859d16410c6cd876761eab7a63"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30600356"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9706854"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00792-018-01073-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111039258"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00792-018-01073-5", 
          "https://app.dimensions.ai/details/publication/pub.1111039258"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000309_0000000309/records_106277_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00792-018-01073-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00792-018-01073-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00792-018-01073-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00792-018-01073-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00792-018-01073-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    232 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00792-018-01073-5 schema:about anzsrc-for:06
    2 anzsrc-for:0605
    3 schema:author N9398edba814b4a08ad8d1473f5f82040
    4 schema:citation sg:pub.10.1038/ismej.2015.150
    5 sg:pub.10.1038/ismej.2015.153
    6 sg:pub.10.1038/ismej.2015.97
    7 sg:pub.10.1038/ismej.2017.113
    8 sg:pub.10.1038/ismej.2017.39
    9 sg:pub.10.1038/nature09375
    10 sg:pub.10.1038/nature12352
    11 sg:pub.10.1038/nbt.2579
    12 sg:pub.10.1038/nbt.3704
    13 sg:pub.10.1038/nbt.3893
    14 sg:pub.10.1038/nbt.4229
    15 sg:pub.10.1038/ncomms13219
    16 sg:pub.10.1038/nmeth.3103
    17 sg:pub.10.1038/srep08365
    18 sg:pub.10.1186/1471-2105-14-60
    19 https://app.dimensions.ai/details/publication/pub.1083201581
    20 https://doi.org/10.1002/0471142727.mb0204s56
    21 https://doi.org/10.1016/j.tim.2007.10.010
    22 https://doi.org/10.1016/s0141-0229(98)00171-9
    23 https://doi.org/10.1093/bioinformatics/btu033
    24 https://doi.org/10.1093/femsec/fiy152
    25 https://doi.org/10.1093/nar/gkr1178
    26 https://doi.org/10.1093/nar/gks1219
    27 https://doi.org/10.1093/sysbio/syq010
    28 https://doi.org/10.1101/gr.183012.114
    29 https://doi.org/10.1101/gr.186072.114
    30 https://doi.org/10.1111/1462-2920.12093
    31 https://doi.org/10.1111/1462-2920.12284
    32 https://doi.org/10.1111/1462-2920.13362
    33 https://doi.org/10.1128/aem.00718-09
    34 https://doi.org/10.1128/aem.01412-07
    35 https://doi.org/10.1128/aem.01541-09
    36 https://doi.org/10.1128/aem.01774-14
    37 https://doi.org/10.1371/journal.pone.0092139
    38 https://doi.org/10.14806/ej.17.1.200
    39 https://doi.org/10.3389/fmicb.2016.00731
    40 https://doi.org/10.3390/md9040645
    41 https://doi.org/10.7287/peerj.preprints.1900v1
    42 https://doi.org/10.7717/peerj.1319
    43 schema:datePublished 2019-03
    44 schema:datePublishedReg 2019-03-01
    45 schema:description Bacteria of candidate phylum OP8 (Aminicenantes) have been identified in various terrestrial and marine ecosystems as a result of molecular analysis of microbial communities. So far, none of the representatives of Aminicenantes have been isolated in a pure culture. We assembled the near-complete genome of a member of Aminicenantes from the metagenome of the 2-km-deep subsurface thermal aquifer in Western Siberia and used genomic data to analyze the metabolic pathways of this bacterium and its ecological role. This bacterium, designated BY38, was predicted to be rod shaped, it lacks flagellar machinery but twitching motility is encoded. Analysis of the BY38 genome revealed a variety of glycosyl hydrolases that can enable utilization of carbohydrates, including chitin, cellulose, starch, mannose, galactose, fructose, fucose, rhamnose, maltose and arabinose. The reconstructed central metabolic pathways suggested that Aminicenantes bacterium BY38 is an anaerobic organotroph capable of fermenting carbohydrates and proteinaceous substrates and performing anaerobic respiration with nitrite. In the deep subsurface aquifer Aminicenantes probably act as destructors of buried organic matter and produce hydrogen and acetate. Based on phylogenetic and genomic analyses, the novel bacterium is proposed to be classified as Candidatus Saccharicenans subterraneum.
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree false
    49 schema:isPartOf sg:journal.1116821
    50 schema:name Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle
    51 schema:pagination 1-12
    52 schema:productId N3f3be26917344fa397f665af6217d051
    53 N705a066a5acb4382aee3a6692ed9d9bb
    54 Nc1cc2065c4fe4f7ab335c262a67ddc3b
    55 Nd0c6cbda19c54faa864f34921fd077b9
    56 Ne0a3cc7ff43142879032a5f850d0c550
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111039258
    58 https://doi.org/10.1007/s00792-018-01073-5
    59 schema:sdDatePublished 2019-04-11T08:31
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher Nd300b5d501874c079837090d651195cb
    62 schema:url https://link.springer.com/10.1007%2Fs00792-018-01073-5
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N20291a01342a487e85b1545298492166 schema:name Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp 33-2, 119071, Moscow, Russia
    67 rdf:type schema:Organization
    68 N3f3be26917344fa397f665af6217d051 schema:name nlm_unique_id
    69 schema:value 9706854
    70 rdf:type schema:PropertyValue
    71 N4d2a9e46c870441c810462912707345f schema:name Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp 33-2, 119071, Moscow, Russia
    72 rdf:type schema:Organization
    73 N6c5d0171748d4eddbabdca920ec15439 rdf:first sg:person.01047715142.54
    74 rdf:rest Na3c65d6536e940488bf991cf29161fc6
    75 N703578ea67a4492eaceb9becf2a18aaf schema:name Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp 33-2, 119071, Moscow, Russia
    76 rdf:type schema:Organization
    77 N705a066a5acb4382aee3a6692ed9d9bb schema:name dimensions_id
    78 schema:value pub.1111039258
    79 rdf:type schema:PropertyValue
    80 N9398edba814b4a08ad8d1473f5f82040 rdf:first sg:person.0716605534.18
    81 rdf:rest N94146dc51a0940b3888084e48176b612
    82 N94146dc51a0940b3888084e48176b612 rdf:first sg:person.01354632245.73
    83 rdf:rest Ne9949c6030b145e8be84b73b7288ce8a
    84 Na3c65d6536e940488bf991cf29161fc6 rdf:first sg:person.0770105301.75
    85 rdf:rest rdf:nil
    86 Nc1cc2065c4fe4f7ab335c262a67ddc3b schema:name pubmed_id
    87 schema:value 30600356
    88 rdf:type schema:PropertyValue
    89 Nd0c6cbda19c54faa864f34921fd077b9 schema:name doi
    90 schema:value 10.1007/s00792-018-01073-5
    91 rdf:type schema:PropertyValue
    92 Nd300b5d501874c079837090d651195cb schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 Ne0a3cc7ff43142879032a5f850d0c550 schema:name readcube_id
    95 schema:value 73802ba8626963edd093711cfdc1bc348fb347859d16410c6cd876761eab7a63
    96 rdf:type schema:PropertyValue
    97 Ne9949c6030b145e8be84b73b7288ce8a rdf:first sg:person.0721735213.42
    98 rdf:rest N6c5d0171748d4eddbabdca920ec15439
    99 Neb827f5c562a4b80a7959af7d4cfff28 schema:name Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp 33-2, 119071, Moscow, Russia
    100 rdf:type schema:Organization
    101 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Biological Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Microbiology
    106 rdf:type schema:DefinedTerm
    107 sg:grant.4896984 http://pending.schema.org/fundedItem sg:pub.10.1007/s00792-018-01073-5
    108 rdf:type schema:MonetaryGrant
    109 sg:journal.1116821 schema:issn 1431-0651
    110 1433-4909
    111 schema:name Extremophiles
    112 rdf:type schema:Periodical
    113 sg:person.01047715142.54 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
    114 schema:familyName Karnachuk
    115 schema:givenName Olga V.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047715142.54
    117 rdf:type schema:Person
    118 sg:person.01354632245.73 schema:affiliation N703578ea67a4492eaceb9becf2a18aaf
    119 schema:familyName Mardanov
    120 schema:givenName Andrey V.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354632245.73
    122 rdf:type schema:Person
    123 sg:person.0716605534.18 schema:affiliation N20291a01342a487e85b1545298492166
    124 schema:familyName Kadnikov
    125 schema:givenName Vitaly V.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716605534.18
    127 rdf:type schema:Person
    128 sg:person.0721735213.42 schema:affiliation Neb827f5c562a4b80a7959af7d4cfff28
    129 schema:familyName Beletsky
    130 schema:givenName Alexey V.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721735213.42
    132 rdf:type schema:Person
    133 sg:person.0770105301.75 schema:affiliation N4d2a9e46c870441c810462912707345f
    134 schema:familyName Ravin
    135 schema:givenName Nikolai V.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770105301.75
    137 rdf:type schema:Person
    138 sg:pub.10.1038/ismej.2015.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012047667
    139 https://doi.org/10.1038/ismej.2015.150
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1038/ismej.2015.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002123234
    142 https://doi.org/10.1038/ismej.2015.153
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1038/ismej.2015.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019204391
    145 https://doi.org/10.1038/ismej.2015.97
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/ismej.2017.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090850973
    148 https://doi.org/10.1038/ismej.2017.113
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1038/ismej.2017.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128192
    151 https://doi.org/10.1038/ismej.2017.39
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/nature09375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015326716
    154 https://doi.org/10.1038/nature09375
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/nature12352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019299949
    157 https://doi.org/10.1038/nature12352
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/nbt.2579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010652073
    160 https://doi.org/10.1038/nbt.2579
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/nbt.3704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020940033
    163 https://doi.org/10.1038/nbt.3704
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nbt.3893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091105392
    166 https://doi.org/10.1038/nbt.3893
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nbt.4229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106359945
    169 https://doi.org/10.1038/nbt.4229
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/ncomms13219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035143030
    172 https://doi.org/10.1038/ncomms13219
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nmeth.3103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034514160
    175 https://doi.org/10.1038/nmeth.3103
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/srep08365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034123211
    178 https://doi.org/10.1038/srep08365
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1186/1471-2105-14-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016754105
    181 https://doi.org/10.1186/1471-2105-14-60
    182 rdf:type schema:CreativeWork
    183 https://app.dimensions.ai/details/publication/pub.1083201581 schema:CreativeWork
    184 https://doi.org/10.1002/0471142727.mb0204s56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040923428
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.tim.2007.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015178856
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/s0141-0229(98)00171-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024924821
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1093/bioinformatics/btu033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000848409
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1093/femsec/fiy152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106026724
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1093/nar/gkr1178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001860160
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1093/nar/gks1219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017730157
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1093/sysbio/syq010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046004748
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1101/gr.183012.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006080321
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1101/gr.186072.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015107573
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1111/1462-2920.12093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045678456
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1111/1462-2920.12284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029123745
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1111/1462-2920.13362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003096235
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1128/aem.00718-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028415851
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1128/aem.01412-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042658875
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1128/aem.01541-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038354310
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1128/aem.01774-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002179889
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1371/journal.pone.0092139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012647120
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.14806/ej.17.1.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067372670
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.3389/fmicb.2016.00731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040077111
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.3390/md9040645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001560217
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.7287/peerj.preprints.1900v1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107335254
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.7717/peerj.1319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047354329
    229 rdf:type schema:CreativeWork
    230 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
    231 schema:name Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050, Tomsk, Russia
    232 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...