Triangular membership function based real-time gesture monitoring system for physical disorder detection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10-07

AUTHORS

Sriparna Saha, Monalisa Pal, Amit Konar

ABSTRACT

A novel approach to distinguish 25 body gestures enlightening physical disorders in young and elder individuals is explained using the proposed system. Here a well-known human sensing device, Kinect sensor is used which approximates the human body by virtue of 20 body joints and produces a data stream from which skeleton of the human body is traced. Sampling rate of the data stream is 30 frames per second where every frame represents a body gesture. The overall system is bifurcated into two parts. The offline part calculates 19 features from each frame representing a diseased gesture. These features are angle and distance information between 20 body joints. Features correspond to a definite pattern for a specific body gesture. In online part, triangular fuzzy matching based algorithm performs to detect real-time gestures with 90.57% accuracy. For achieving better accuracy, decision tree is enforced to separate sitting and standing body gestures. The proposed approach is observed to outperform several contemporary approaches in terms of accuracy while presenting a simple system which is based on medical knowledge and is capable of distinguishing as large as 25 gestures. More... »

PAGES

1-14

References to SciGraph publications

  • 2001-12-20. Vision-Based Gesture Recognition: A Review in GESTURE-BASED COMMUNICATION IN HUMAN-COMPUTER INTERACTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00791-017-0281-y

    DOI

    http://dx.doi.org/10.1007/s00791-017-0281-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092125415


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "West Bengal University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.440742.1", 
              "name": [
                "Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, BF 142, Sector 1, Salt Lake City, 700 064, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saha", 
            "givenName": "Sriparna", 
            "id": "sg:person.011526334455.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526334455.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Artificial Intelligence Lab., Electronics and Telecommunication Engineering Department, Jadavpur University, 700 032, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pal", 
            "givenName": "Monalisa", 
            "id": "sg:person.014222544617.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222544617.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Artificial Intelligence Lab., Electronics and Telecommunication Engineering Department, Jadavpur University, 700 032, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Konar", 
            "givenName": "Amit", 
            "id": "sg:person.01337053064.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1006/cviu.2000.0897", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003035974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004703-200306000-00003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009931005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004703-200306000-00003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009931005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-0114(85)90012-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010278967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.protcy.2012.03.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010479017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2012.09.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011637751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apergo.2011.09.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020107615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46616-9_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021177730", 
              "https://doi.org/10.1007/3-540-46616-9_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46616-9_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021177730", 
              "https://doi.org/10.1007/3-540-46616-9_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-0114(83)80082-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022300824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(88)90048-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023620056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(88)90048-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023620056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0020-0255(71)80005-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025231620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-0114(92)90223-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034175122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-0114(92)90223-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034175122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s120201437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036195029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.4704644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042974142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cviu.2006.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045512314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-0114(97)00077-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049188206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2012.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050082134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cviu.1998.0716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050362942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gaitpost.2012.03.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051597766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-0114(94)90003-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053344573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-0114(94)90003-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053344573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ije/26.3.575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053544681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.159070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mc.2011.114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061388493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mc.2011.190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061388527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcc.2007.893280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061797955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2012.56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061813933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iembs.2009.5334915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077994725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/fuzzy.1992.258721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086300361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ismar.2011.6092378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093215863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sieds.2012.6215130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094145246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2004.345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094244492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/commantel.2013.6482417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094555433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivsurv.2011.6157022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095102076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/date.2010.5457055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096337486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/date.2010.5457055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096337486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7150/ntno.25901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104367711"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-10-07", 
        "datePublishedReg": "2017-10-07", 
        "description": "A novel approach to distinguish 25 body gestures enlightening physical disorders in young and elder individuals is explained using the proposed system. Here a well-known human sensing device, Kinect sensor is used which approximates the human body by virtue of 20 body joints and produces a data stream from which skeleton of the human body is traced. Sampling rate of the data stream is 30 frames per second where every frame represents a body gesture. The overall system is bifurcated into two parts. The offline part calculates 19 features from each frame representing a diseased gesture. These features are angle and distance information between 20 body joints. Features correspond to a definite pattern for a specific body gesture. In online part, triangular fuzzy matching based algorithm performs to detect real-time gestures with 90.57% accuracy. For achieving better accuracy, decision tree is enforced to separate sitting and standing body gestures. The proposed approach is observed to outperform several contemporary approaches in terms of accuracy while presenting a simple system which is based on medical knowledge and is capable of distinguishing as large as 25 gestures.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00791-017-0281-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1134510", 
            "issn": [
              "1432-9360", 
              "1433-0369"
            ], 
            "name": "Computing and Visualization in Science", 
            "type": "Periodical"
          }
        ], 
        "name": "Triangular membership function based real-time gesture monitoring system for physical disorder detection", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0e06b10c388092b36293e9c6cbdf2213e2c5b719a7223ed58d2a129ea191df42"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00791-017-0281-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092125415"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00791-017-0281-y", 
          "https://app.dimensions.ai/details/publication/pub.1092125415"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000601.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00791-017-0281-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00791-017-0281-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00791-017-0281-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00791-017-0281-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00791-017-0281-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    175 TRIPLES      21 PREDICATES      58 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00791-017-0281-y schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N0787b6c5a65743018e46df5fbd5e7d1b
    4 schema:citation sg:pub.10.1007/3-540-46616-9_10
    5 https://doi.org/10.1006/cviu.1998.0716
    6 https://doi.org/10.1006/cviu.2000.0897
    7 https://doi.org/10.1016/0031-3203(88)90048-9
    8 https://doi.org/10.1016/0165-0114(85)90012-0
    9 https://doi.org/10.1016/0165-0114(92)90223-q
    10 https://doi.org/10.1016/0165-0114(94)90003-5
    11 https://doi.org/10.1016/j.apergo.2011.09.011
    12 https://doi.org/10.1016/j.cviu.2006.10.019
    13 https://doi.org/10.1016/j.gaitpost.2012.03.033
    14 https://doi.org/10.1016/j.patrec.2012.06.003
    15 https://doi.org/10.1016/j.patrec.2012.09.014
    16 https://doi.org/10.1016/j.protcy.2012.03.021
    17 https://doi.org/10.1016/s0020-0255(71)80005-1
    18 https://doi.org/10.1016/s0165-0114(83)80082-7
    19 https://doi.org/10.1016/s0165-0114(97)00077-8
    20 https://doi.org/10.1093/ije/26.3.575
    21 https://doi.org/10.1097/00004703-200306000-00003
    22 https://doi.org/10.1109/72.159070
    23 https://doi.org/10.1109/commantel.2013.6482417
    24 https://doi.org/10.1109/cvpr.2004.345
    25 https://doi.org/10.1109/date.2010.5457055
    26 https://doi.org/10.1109/fuzzy.1992.258721
    27 https://doi.org/10.1109/iembs.2009.5334915
    28 https://doi.org/10.1109/ismar.2011.6092378
    29 https://doi.org/10.1109/ivsurv.2011.6157022
    30 https://doi.org/10.1109/mc.2011.114
    31 https://doi.org/10.1109/mc.2011.190
    32 https://doi.org/10.1109/sieds.2012.6215130
    33 https://doi.org/10.1109/tsmcc.2007.893280
    34 https://doi.org/10.1109/tvcg.2012.56
    35 https://doi.org/10.1118/1.4704644
    36 https://doi.org/10.3390/s120201437
    37 https://doi.org/10.7150/ntno.25901
    38 schema:datePublished 2017-10-07
    39 schema:datePublishedReg 2017-10-07
    40 schema:description A novel approach to distinguish 25 body gestures enlightening physical disorders in young and elder individuals is explained using the proposed system. Here a well-known human sensing device, Kinect sensor is used which approximates the human body by virtue of 20 body joints and produces a data stream from which skeleton of the human body is traced. Sampling rate of the data stream is 30 frames per second where every frame represents a body gesture. The overall system is bifurcated into two parts. The offline part calculates 19 features from each frame representing a diseased gesture. These features are angle and distance information between 20 body joints. Features correspond to a definite pattern for a specific body gesture. In online part, triangular fuzzy matching based algorithm performs to detect real-time gestures with 90.57% accuracy. For achieving better accuracy, decision tree is enforced to separate sitting and standing body gestures. The proposed approach is observed to outperform several contemporary approaches in terms of accuracy while presenting a simple system which is based on medical knowledge and is capable of distinguishing as large as 25 gestures.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree false
    44 schema:isPartOf sg:journal.1134510
    45 schema:name Triangular membership function based real-time gesture monitoring system for physical disorder detection
    46 schema:pagination 1-14
    47 schema:productId N11cd1ac1c80c4276ae1d8eb0c521ad74
    48 N467ab436b6eb40a7b628a23420470626
    49 N9388d5065411468aa9d33d41f678a3b1
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092125415
    51 https://doi.org/10.1007/s00791-017-0281-y
    52 schema:sdDatePublished 2019-04-10T20:59
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N373ab847019c4406ac87f88dc1fbfe6c
    55 schema:url https://link.springer.com/10.1007%2Fs00791-017-0281-y
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N0787b6c5a65743018e46df5fbd5e7d1b rdf:first sg:person.011526334455.36
    60 rdf:rest Ne6d8718098554d54aed1965a1c766451
    61 N11cd1ac1c80c4276ae1d8eb0c521ad74 schema:name dimensions_id
    62 schema:value pub.1092125415
    63 rdf:type schema:PropertyValue
    64 N373ab847019c4406ac87f88dc1fbfe6c schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 N467ab436b6eb40a7b628a23420470626 schema:name readcube_id
    67 schema:value 0e06b10c388092b36293e9c6cbdf2213e2c5b719a7223ed58d2a129ea191df42
    68 rdf:type schema:PropertyValue
    69 N4c2748eb8e384487bd8c0e6214c7b722 rdf:first sg:person.01337053064.29
    70 rdf:rest rdf:nil
    71 N9388d5065411468aa9d33d41f678a3b1 schema:name doi
    72 schema:value 10.1007/s00791-017-0281-y
    73 rdf:type schema:PropertyValue
    74 Ne6d8718098554d54aed1965a1c766451 rdf:first sg:person.014222544617.16
    75 rdf:rest N4c2748eb8e384487bd8c0e6214c7b722
    76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Information and Computing Sciences
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Information Systems
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1134510 schema:issn 1432-9360
    83 1433-0369
    84 schema:name Computing and Visualization in Science
    85 rdf:type schema:Periodical
    86 sg:person.011526334455.36 schema:affiliation https://www.grid.ac/institutes/grid.440742.1
    87 schema:familyName Saha
    88 schema:givenName Sriparna
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526334455.36
    90 rdf:type schema:Person
    91 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    92 schema:familyName Konar
    93 schema:givenName Amit
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
    95 rdf:type schema:Person
    96 sg:person.014222544617.16 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    97 schema:familyName Pal
    98 schema:givenName Monalisa
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222544617.16
    100 rdf:type schema:Person
    101 sg:pub.10.1007/3-540-46616-9_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021177730
    102 https://doi.org/10.1007/3-540-46616-9_10
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1006/cviu.1998.0716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050362942
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1006/cviu.2000.0897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003035974
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/0031-3203(88)90048-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023620056
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/0165-0114(85)90012-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010278967
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/0165-0114(92)90223-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1034175122
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/0165-0114(94)90003-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053344573
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.apergo.2011.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020107615
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.cviu.2006.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045512314
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.gaitpost.2012.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051597766
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.patrec.2012.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050082134
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.patrec.2012.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011637751
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.protcy.2012.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010479017
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/s0020-0255(71)80005-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025231620
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/s0165-0114(83)80082-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022300824
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/s0165-0114(97)00077-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049188206
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1093/ije/26.3.575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053544681
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1097/00004703-200306000-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009931005
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/72.159070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218287
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/commantel.2013.6482417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094555433
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/cvpr.2004.345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094244492
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/date.2010.5457055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096337486
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/fuzzy.1992.258721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086300361
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/iembs.2009.5334915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077994725
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/ismar.2011.6092378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093215863
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/ivsurv.2011.6157022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095102076
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/mc.2011.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061388493
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/mc.2011.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061388527
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/sieds.2012.6215130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094145246
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/tsmcc.2007.893280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797955
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/tvcg.2012.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813933
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1118/1.4704644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042974142
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.3390/s120201437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036195029
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.7150/ntno.25901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104367711
    169 rdf:type schema:CreativeWork
    170 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
    171 schema:name Artificial Intelligence Lab., Electronics and Telecommunication Engineering Department, Jadavpur University, 700 032, Kolkata, West Bengal, India
    172 rdf:type schema:Organization
    173 https://www.grid.ac/institutes/grid.440742.1 schema:alternateName West Bengal University of Technology
    174 schema:name Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, BF 142, Sector 1, Salt Lake City, 700 064, Kolkata, West Bengal, India
    175 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...