Calculating ellipse overlap areas View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-10

AUTHORS

Gary B. Hughes, Mohcine Chraibi

ABSTRACT

We present an approach for finding the overlap area between two ellipses that does not rely on proxy curves. The Gauss-Green formula is used to determine a segment area between two points on an ellipse. Overlap between two ellipses is calculated by combining the areas of appropriate segments and polygons in each ellipse. For four of the ten possible orientations of two ellipses, the method requires numerical determination of transverse intersection points. Approximate intersection points can be determined by solving the two implicit ellipse equations simultaneously. Alternative approaches for finding transverse intersection points are available using tools from algebraic geometry, e.g., based on solving an Eigen-problem that is related to companion matrices of the two implicit ellipse curves. Implementations in C of several algorithm options are analyzed for accuracy, precision and robustness with a range of input ellipses. More... »

PAGES

291-301

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00791-013-0214-3

DOI

http://dx.doi.org/10.1007/s00791-013-0214-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021311985


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Polytechnic State University, San Luis Obispo, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.253547.2", 
          "name": [
            "California Polytechnic State University, San Luis Obispo, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hughes", 
        "givenName": "Gary B.", 
        "id": "sg:person.016147103407.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016147103407.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fcLich, J\u00fcLich Supercomputing Centre, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Forschungszentrum J\u00fcLich, J\u00fcLich Supercomputing Centre, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chraibi", 
        "givenName": "Mohcine", 
        "id": "sg:person.012724113050.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724113050.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-27357-3_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032090794", 
          "https://doi.org/10.1007/3-540-27357-3_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01189576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022176841", 
          "https://doi.org/10.1007/bf01189576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11555964_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000444676", 
          "https://doi.org/10.1007/11555964_7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10", 
    "datePublishedReg": "2012-10-01", 
    "description": "We present an approach for finding the overlap area between two ellipses that does not rely on proxy curves. The Gauss-Green formula is used to determine a segment area between two points on an ellipse. Overlap between two ellipses is calculated by combining the areas of appropriate segments and polygons in each ellipse. For four of the ten possible orientations of two ellipses, the method requires numerical determination of transverse intersection points. Approximate intersection points can be determined by solving the two implicit ellipse equations simultaneously. Alternative approaches for finding transverse intersection points are available using tools from algebraic geometry, e.g., based on solving an Eigen-problem that is related to companion matrices of the two implicit ellipse curves. Implementations in C of several algorithm options are analyzed for accuracy, precision and robustness with a range of input ellipses.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00791-013-0214-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1134510", 
        "issn": [
          "1432-9360", 
          "1433-0369"
        ], 
        "name": "Computing and Visualization in Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "Gauss\u2013Green formulas", 
      "algebraic geometry", 
      "intersection points", 
      "companion matrix", 
      "eigen problem", 
      "ellipse equation", 
      "numerical determination", 
      "ellipse curve", 
      "algorithm options", 
      "ellipses", 
      "equations", 
      "ellipse", 
      "possible orientations", 
      "overlap area", 
      "point", 
      "alternative approach", 
      "geometry", 
      "proxy curves", 
      "formula", 
      "robustness", 
      "polygons", 
      "approach", 
      "matrix", 
      "curves", 
      "accuracy", 
      "segment area", 
      "appropriate segments", 
      "implementation", 
      "tool", 
      "orientation", 
      "precision", 
      "range", 
      "determination", 
      "area", 
      "segments", 
      "options", 
      "method"
    ], 
    "name": "Calculating ellipse overlap areas", 
    "pagination": "291-301", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021311985"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00791-013-0214-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00791-013-0214-3", 
      "https://app.dimensions.ai/details/publication/pub.1021311985"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_564.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00791-013-0214-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00791-013-0214-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00791-013-0214-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00791-013-0214-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00791-013-0214-3'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      22 PREDICATES      66 URIs      55 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00791-013-0214-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb6c955243f9247698870363216b2d3da
4 schema:citation sg:pub.10.1007/11555964_7
5 sg:pub.10.1007/3-540-27357-3_3
6 sg:pub.10.1007/bf01189576
7 schema:datePublished 2012-10
8 schema:datePublishedReg 2012-10-01
9 schema:description We present an approach for finding the overlap area between two ellipses that does not rely on proxy curves. The Gauss-Green formula is used to determine a segment area between two points on an ellipse. Overlap between two ellipses is calculated by combining the areas of appropriate segments and polygons in each ellipse. For four of the ten possible orientations of two ellipses, the method requires numerical determination of transverse intersection points. Approximate intersection points can be determined by solving the two implicit ellipse equations simultaneously. Alternative approaches for finding transverse intersection points are available using tools from algebraic geometry, e.g., based on solving an Eigen-problem that is related to companion matrices of the two implicit ellipse curves. Implementations in C of several algorithm options are analyzed for accuracy, precision and robustness with a range of input ellipses.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf Nb54e3399bd414c56b04297f2b0e2c0dd
14 Ndcc3faeb8baa48fdadaa3e70355216e5
15 sg:journal.1134510
16 schema:keywords Gauss–Green formulas
17 accuracy
18 algebraic geometry
19 algorithm options
20 alternative approach
21 approach
22 appropriate segments
23 area
24 companion matrix
25 curves
26 determination
27 eigen problem
28 ellipse
29 ellipse curve
30 ellipse equation
31 ellipses
32 equations
33 formula
34 geometry
35 implementation
36 intersection points
37 matrix
38 method
39 numerical determination
40 options
41 orientation
42 overlap area
43 point
44 polygons
45 possible orientations
46 precision
47 proxy curves
48 range
49 robustness
50 segment area
51 segments
52 tool
53 schema:name Calculating ellipse overlap areas
54 schema:pagination 291-301
55 schema:productId N005fd29d207f4a76a7b4b6dbf52232bb
56 Nf022a7eecedf492882745d28a24480b8
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021311985
58 https://doi.org/10.1007/s00791-013-0214-3
59 schema:sdDatePublished 2022-06-01T22:11
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N0d4ab8887e2046e3834f162785e5211c
62 schema:url https://doi.org/10.1007/s00791-013-0214-3
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N005fd29d207f4a76a7b4b6dbf52232bb schema:name doi
67 schema:value 10.1007/s00791-013-0214-3
68 rdf:type schema:PropertyValue
69 N0d4ab8887e2046e3834f162785e5211c schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nb54e3399bd414c56b04297f2b0e2c0dd schema:volumeNumber 15
72 rdf:type schema:PublicationVolume
73 Nb6c955243f9247698870363216b2d3da rdf:first sg:person.016147103407.75
74 rdf:rest Nc7ad0c87fe4040f582ff6fe54d7b686b
75 Nc7ad0c87fe4040f582ff6fe54d7b686b rdf:first sg:person.012724113050.28
76 rdf:rest rdf:nil
77 Ndcc3faeb8baa48fdadaa3e70355216e5 schema:issueNumber 5
78 rdf:type schema:PublicationIssue
79 Nf022a7eecedf492882745d28a24480b8 schema:name dimensions_id
80 schema:value pub.1021311985
81 rdf:type schema:PropertyValue
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
86 schema:name Pure Mathematics
87 rdf:type schema:DefinedTerm
88 sg:journal.1134510 schema:issn 1432-9360
89 1433-0369
90 schema:name Computing and Visualization in Science
91 schema:publisher Springer Nature
92 rdf:type schema:Periodical
93 sg:person.012724113050.28 schema:affiliation grid-institutes:grid.8385.6
94 schema:familyName Chraibi
95 schema:givenName Mohcine
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724113050.28
97 rdf:type schema:Person
98 sg:person.016147103407.75 schema:affiliation grid-institutes:grid.253547.2
99 schema:familyName Hughes
100 schema:givenName Gary B.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016147103407.75
102 rdf:type schema:Person
103 sg:pub.10.1007/11555964_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000444676
104 https://doi.org/10.1007/11555964_7
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/3-540-27357-3_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032090794
107 https://doi.org/10.1007/3-540-27357-3_3
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf01189576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022176841
110 https://doi.org/10.1007/bf01189576
111 rdf:type schema:CreativeWork
112 grid-institutes:grid.253547.2 schema:alternateName California Polytechnic State University, San Luis Obispo, CA, USA
113 schema:name California Polytechnic State University, San Luis Obispo, CA, USA
114 rdf:type schema:Organization
115 grid-institutes:grid.8385.6 schema:alternateName Forschungszentrum JüLich, JüLich Supercomputing Centre, Jülich, Germany
116 schema:name Forschungszentrum JüLich, JüLich Supercomputing Centre, Jülich, Germany
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...