On dynamic measures of risk View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-08

AUTHORS

Jakša Cvitanić, Ioannis Karatzas

ABSTRACT

. In the context of complete financial markets, we study dynamic measures of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ \rho(x;C):=\sup_{\nu\in\D} \inf_{\pi(\cdot)\in\A(x)}{\bf E}_\nu\left(\frac{C-X^{x, \pi}(T)}{S_0(T)}\right)^+, \] \end{document} for the risk associated with hedging a given liability C at time t = T. Here x is the initial capital available at time t = 0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal A}(x)$\end{document} the class of admissible portfolio strategies, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $S_0(\cdot)$\end{document} the price of the risk-free instrument in the market, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal P}=\{{\bf P}_\nu\}_{\nu\in{\cal D}}$\end{document} a suitable family of probability measures, and [0,T] the temporal horizon during which all economic activity takes place. The classes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal A}(x)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal D}$\end{document} are general enough to incorporate capital requirements, and uncertainty about the actual values of stock-appreciation rates, respectively. For this latter purpose we discuss, in addition to the above “max-min” approach, a related measure of risk in a “Bayesian” framework. Risk-measures of this type were introduced by Artzner, Delbaen, Eber and Heath in a static setting, and were shown to possess certain desirable “coherence” properties. More... »

PAGES

451-482

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s007800050071

DOI

http://dx.doi.org/10.1007/s007800050071

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013695976


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Commerce, Management, Tourism and Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Banking, Finance and Investment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Columbia University, New York, NY 10027, USA, US", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Statistics, Columbia University, New York, NY 10027, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cvitani\u0107", 
        "givenName": "Jak\u0161a", 
        "id": "sg:person.016505501211.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505501211.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Mathematics and Statistics, Columbia University, New York, NY 10027, USA (e-mail: cj@stat.columbia.edu; ik@math.columbia.edu), US", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Departments of Mathematics and Statistics, Columbia University, New York, NY 10027, USA (e-mail: cj@stat.columbia.edu; ik@math.columbia.edu), US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karatzas", 
        "givenName": "Ioannis", 
        "id": "sg:person.015563520432.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015563520432.99"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999-08", 
    "datePublishedReg": "1999-08-01", 
    "description": "Abstract. In the context of complete financial markets, we study dynamic measures of the form \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n \\[ \\rho(x;C):=\\sup_{\\nu\\in\\D} \\inf_{\\pi(\\cdot)\\in\\A(x)}{\\bf E}_\\nu\\left(\\frac{C-X^{x, \\pi}(T)}{S_0(T)}\\right)^+, \\] \\end{document} for the risk associated with hedging a given liability C at time t = T. Here x is the initial capital available at time t = 0, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n${\\cal A}(x)$\\end{document} the class of admissible portfolio strategies, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$S_0(\\cdot)$\\end{document} the price of the risk-free instrument in the market, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n${\\cal P}=\\{{\\bf P}_\\nu\\}_{\\nu\\in{\\cal D}}$\\end{document} a suitable family of probability measures, and [0,T] the temporal horizon during which all economic activity takes place. The classes \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n${\\cal A}(x)$\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n${\\cal D}$\\end{document} are general enough to incorporate capital requirements, and uncertainty about the actual values of stock-appreciation rates, respectively. For this latter purpose we discuss, in addition to the above \u201cmax-min\u201d approach, a related measure of risk in a \u201cBayesian\u201d framework. Risk-measures of this type were introduced by Artzner, Delbaen, Eber and Heath in a static setting, and were shown to possess certain desirable \u201ccoherence\u201d properties.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s007800050071", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135992", 
        "issn": [
          "0949-2984", 
          "1432-1122"
        ], 
        "name": "Finance and Stochastics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "complete financial markets", 
      "risk-free instruments", 
      "stocks appreciation rates", 
      "financial markets", 
      "capital requirements", 
      "portfolio strategies", 
      "economic activity", 
      "initial capital", 
      "static setting", 
      "dynamic measures", 
      "market", 
      "temporal horizon", 
      "probability measure", 
      "prices", 
      "related measures", 
      "capital", 
      "Artzner", 
      "measures", 
      "actual values", 
      "horizon", 
      "suitable family", 
      "latter purpose", 
      "uncertainty", 
      "risk", 
      "time t", 
      "instrument", 
      "framework", 
      "Delbaen", 
      "max-min", 
      "context", 
      "purpose", 
      "strategies", 
      "heath", 
      "approach", 
      "values", 
      "rate", 
      "setting", 
      "place", 
      "class", 
      "form", 
      "types", 
      "coherence", 
      "requirements", 
      "activity", 
      "family", 
      "addition", 
      "properties", 
      "EBER"
    ], 
    "name": "On dynamic measures of risk", 
    "pagination": "451-482", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013695976"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s007800050071"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s007800050071", 
      "https://app.dimensions.ai/details/publication/pub.1013695976"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_316.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s007800050071"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s007800050071'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s007800050071'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s007800050071'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s007800050071'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      20 PREDICATES      73 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s007800050071 schema:about anzsrc-for:15
2 anzsrc-for:1502
3 schema:author Nc7c25de7862d4be4bbc7cfc5dfbb2047
4 schema:datePublished 1999-08
5 schema:datePublishedReg 1999-08-01
6 schema:description Abstract. In the context of complete financial markets, we study dynamic measures of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ \rho(x;C):=\sup_{\nu\in\D} \inf_{\pi(\cdot)\in\A(x)}{\bf E}_\nu\left(\frac{C-X^{x, \pi}(T)}{S_0(T)}\right)^+, \] \end{document} for the risk associated with hedging a given liability C at time t = T. Here x is the initial capital available at time t = 0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal A}(x)$\end{document} the class of admissible portfolio strategies, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $S_0(\cdot)$\end{document} the price of the risk-free instrument in the market, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal P}=\{{\bf P}_\nu\}_{\nu\in{\cal D}}$\end{document} a suitable family of probability measures, and [0,T] the temporal horizon during which all economic activity takes place. The classes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal A}(x)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal D}$\end{document} are general enough to incorporate capital requirements, and uncertainty about the actual values of stock-appreciation rates, respectively. For this latter purpose we discuss, in addition to the above “max-min” approach, a related measure of risk in a “Bayesian” framework. Risk-measures of this type were introduced by Artzner, Delbaen, Eber and Heath in a static setting, and were shown to possess certain desirable “coherence” properties.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N84225b52b8d54c389c894910b63a55c0
10 Nf1dd3fd20abe4d5ab54eeb01c66e6a64
11 sg:journal.1135992
12 schema:keywords Artzner
13 Delbaen
14 EBER
15 activity
16 actual values
17 addition
18 approach
19 capital
20 capital requirements
21 class
22 coherence
23 complete financial markets
24 context
25 dynamic measures
26 economic activity
27 family
28 financial markets
29 form
30 framework
31 heath
32 horizon
33 initial capital
34 instrument
35 latter purpose
36 market
37 max-min
38 measures
39 place
40 portfolio strategies
41 prices
42 probability measure
43 properties
44 purpose
45 rate
46 related measures
47 requirements
48 risk
49 risk-free instruments
50 setting
51 static setting
52 stocks appreciation rates
53 strategies
54 suitable family
55 temporal horizon
56 time t
57 types
58 uncertainty
59 values
60 schema:name On dynamic measures of risk
61 schema:pagination 451-482
62 schema:productId N54a83a52fe3e4cbabeb24c49c26ac37e
63 N7784ae0c1a0f4bf7ba346f9f729ca3f3
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013695976
65 https://doi.org/10.1007/s007800050071
66 schema:sdDatePublished 2022-10-01T06:30
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N6d862f5eb00b4d708e3fb72adf25bf3b
69 schema:url https://doi.org/10.1007/s007800050071
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N54a83a52fe3e4cbabeb24c49c26ac37e schema:name doi
74 schema:value 10.1007/s007800050071
75 rdf:type schema:PropertyValue
76 N6d862f5eb00b4d708e3fb72adf25bf3b schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N7784ae0c1a0f4bf7ba346f9f729ca3f3 schema:name dimensions_id
79 schema:value pub.1013695976
80 rdf:type schema:PropertyValue
81 N84225b52b8d54c389c894910b63a55c0 schema:volumeNumber 3
82 rdf:type schema:PublicationVolume
83 Nc7c25de7862d4be4bbc7cfc5dfbb2047 rdf:first sg:person.016505501211.18
84 rdf:rest Nec5e9607e2cb4a69a0311f0fa6637def
85 Nec5e9607e2cb4a69a0311f0fa6637def rdf:first sg:person.015563520432.99
86 rdf:rest rdf:nil
87 Nf1dd3fd20abe4d5ab54eeb01c66e6a64 schema:issueNumber 4
88 rdf:type schema:PublicationIssue
89 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
90 schema:name Commerce, Management, Tourism and Services
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1502 schema:inDefinedTermSet anzsrc-for:
93 schema:name Banking, Finance and Investment
94 rdf:type schema:DefinedTerm
95 sg:journal.1135992 schema:issn 0949-2984
96 1432-1122
97 schema:name Finance and Stochastics
98 schema:publisher Springer Nature
99 rdf:type schema:Periodical
100 sg:person.015563520432.99 schema:affiliation grid-institutes:None
101 schema:familyName Karatzas
102 schema:givenName Ioannis
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015563520432.99
104 rdf:type schema:Person
105 sg:person.016505501211.18 schema:affiliation grid-institutes:grid.21729.3f
106 schema:familyName Cvitanić
107 schema:givenName Jakša
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505501211.18
109 rdf:type schema:Person
110 grid-institutes:None schema:alternateName Departments of Mathematics and Statistics, Columbia University, New York, NY 10027, USA (e-mail: cj@stat.columbia.edu; ik@math.columbia.edu), US
111 schema:name Departments of Mathematics and Statistics, Columbia University, New York, NY 10027, USA (e-mail: cj@stat.columbia.edu; ik@math.columbia.edu), US
112 rdf:type schema:Organization
113 grid-institutes:grid.21729.3f schema:alternateName Department of Statistics, Columbia University, New York, NY 10027, USA, US
114 schema:name Department of Statistics, Columbia University, New York, NY 10027, USA, US
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...