Weighted norm inequalities and hedging in incomplete markets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1997-07

AUTHORS

Freddy Delbaen, Pascale Monat, Walter Schachermayer, Martin Schweizer, Christophe Stricker

ABSTRACT

. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $X$\end{document} be an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\Bbb R}^d$\end{document}-valued special semimartingale on a probability space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(\Omega , {\cal F} , ({\cal F} _t)_{0 \leq t \leq T} ,P)$\end{document} with canonical decomposition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $X=X_0+M+A$\end{document}. Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $G_T(\Theta )$\end{document} the space of all random variables \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(\theta \cdot X)_T$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\theta $\end{document} is a predictable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $X$\end{document}-integrable process such that the stochastic integral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\theta \cdot X$\end{document} is in the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal S} ^2$\end{document} of semimartingales. We investigate under which conditions on the semimartingale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $X$\end{document} the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $G_T(\Theta )$\end{document} is closed in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal L} ^2(\Omega , {\cal F} ,P)$\end{document}, a question which arises naturally in the applications to financial mathematics. Our main results give necessary and/or sufficient conditions for the closedness of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $G_T(\Theta )$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal L} ^2(P)$\end{document}. Most of these conditions deal with BMO-martingales and reverse Hölder inequalities which are equivalent to weighted norm inequalities. By means of these last inequalities, we also extend previous results on the Föllmer-Schweizer decomposition. More... »

PAGES

181-227

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s007800050021

DOI

http://dx.doi.org/10.1007/s007800050021

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005349191


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Eidgen\u00f6ssische Technische Hochschule Z\u00fcrich, CH-8092 Z\u00fcrich, Switzerland, CH", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Mathematics, Eidgen\u00f6ssische Technische Hochschule Z\u00fcrich, CH-8092 Z\u00fcrich, Switzerland, CH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delbaen", 
        "givenName": "Freddy", 
        "id": "sg:person.016436526230.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436526230.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Math\u00e9matiques, URA CNRS 741, 16 Route de Gray, F-25030 Besan\u00e7on Cedex, France, FR", 
          "id": "http://www.grid.ac/institutes/grid.463920.a", 
          "name": [
            "Laboratoire de Math\u00e9matiques, URA CNRS 741, 16 Route de Gray, F-25030 Besan\u00e7on Cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monat", 
        "givenName": "Pascale", 
        "id": "sg:person.015141463327.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141463327.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e4t Wien, Br\u00fcnnerstrasse 72, A-1210 Wien, Austria, AT", 
          "id": "http://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Universit\u00e4t Wien, Br\u00fcnnerstrasse 72, A-1210 Wien, Austria, AT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schachermayer", 
        "givenName": "Walter", 
        "id": "sg:person.010531035430.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010531035430.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Berlin, Fachbereich Mathematik, Strasse des 17. Juni 136, D-10623 Berlin, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "TU Berlin, Fachbereich Mathematik, Strasse des 17. Juni 136, D-10623 Berlin, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schweizer", 
        "givenName": "Martin", 
        "id": "sg:person.01363527717.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363527717.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Math\u00e9matiques, URA CNRS 741, 16 Route de Gray, F-25030 Besan\u00e7on Cedex, France, FR", 
          "id": "http://www.grid.ac/institutes/grid.463920.a", 
          "name": [
            "Laboratoire de Math\u00e9matiques, URA CNRS 741, 16 Route de Gray, F-25030 Besan\u00e7on Cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stricker", 
        "givenName": "Christophe", 
        "id": "sg:person.010471303125.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010471303125.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01450498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006728418", 
          "https://doi.org/10.1007/bf01450498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-02619-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039786172", 
          "https://doi.org/10.1007/978-3-662-02619-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0064607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025186938", 
          "https://doi.org/10.1007/bfb0064607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0094638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036973185", 
          "https://doi.org/10.1007/bfb0094638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02425803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029381977", 
          "https://doi.org/10.1007/bf02425803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0073585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031807805", 
          "https://doi.org/10.1007/bfb0073585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0075772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027332361", 
          "https://doi.org/10.1007/bfb0075772"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-07", 
    "datePublishedReg": "1997-07-01", 
    "description": "Abstract. Let \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$X$\\end{document} be an \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n${\\Bbb R}^d$\\end{document}-valued special semimartingale on a probability space \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$(\\Omega , {\\cal F} , ({\\cal F} _t)_{0 \\leq t \\leq T} ,P)$\\end{document} with canonical decomposition \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$X=X_0+M+A$\\end{document}. Denote by \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$G_T(\\Theta )$\\end{document} the space of all random variables \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$(\\theta \\cdot X)_T$\\end{document}, where \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$\\theta $\\end{document} is a predictable \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$X$\\end{document}-integrable process such that the stochastic integral \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$\\theta \\cdot X$\\end{document} is in the space \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n${\\cal S} ^2$\\end{document} of semimartingales. We investigate under which conditions on the semimartingale \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$X$\\end{document} the space \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$G_T(\\Theta )$\\end{document} is closed in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n${\\cal L} ^2(\\Omega , {\\cal F} ,P)$\\end{document}, a question which arises naturally in the applications to financial mathematics. Our main results give necessary and/or sufficient conditions for the closedness of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$G_T(\\Theta )$\\end{document} in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n${\\cal L} ^2(P)$\\end{document}. Most of these conditions deal with BMO-martingales and reverse H\u00f6lder inequalities which are equivalent to weighted norm inequalities. By means of these last inequalities, we also extend previous results on the F\u00f6llmer-Schweizer decomposition.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s007800050021", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135992", 
        "issn": [
          "0949-2984", 
          "1432-1122"
        ], 
        "name": "Finance and Stochastics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "keywords": [
      "space", 
      "inequality", 
      "questions", 
      "norm inequalities", 
      "special semimartingale", 
      "semimartingales", 
      "probability space", 
      "canonical decomposition", 
      "random variables", 
      "integrable processes", 
      "stochastic integrals", 
      "financial mathematics", 
      "sufficient conditions", 
      "H\u00f6lder inequality", 
      "F\u00f6llmer\u2013Schweizer decomposition", 
      "Weighted norm inequalities", 
      "incomplete markets", 
      "mathematics", 
      "main results", 
      "closedness", 
      "means", 
      "process", 
      "integrals", 
      "results", 
      "last inequality", 
      "previous results", 
      "market", 
      "decomposition", 
      "variables", 
      "conditions", 
      "applications"
    ], 
    "name": "Weighted norm inequalities and hedging in incomplete markets", 
    "pagination": "181-227", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005349191"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s007800050021"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s007800050021", 
      "https://app.dimensions.ai/details/publication/pub.1005349191"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_284.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s007800050021"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s007800050021'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s007800050021'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s007800050021'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s007800050021'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      63 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s007800050021 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N83c3caab7d4a43579c99eb34b21ee49c
4 schema:citation sg:pub.10.1007/978-3-662-02619-9
5 sg:pub.10.1007/bf01450498
6 sg:pub.10.1007/bf02425803
7 sg:pub.10.1007/bfb0064607
8 sg:pub.10.1007/bfb0073585
9 sg:pub.10.1007/bfb0075772
10 sg:pub.10.1007/bfb0094638
11 schema:datePublished 1997-07
12 schema:datePublishedReg 1997-07-01
13 schema:description Abstract. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $X$\end{document} be an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\Bbb R}^d$\end{document}-valued special semimartingale on a probability space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(\Omega , {\cal F} , ({\cal F} _t)_{0 \leq t \leq T} ,P)$\end{document} with canonical decomposition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $X=X_0+M+A$\end{document}. Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $G_T(\Theta )$\end{document} the space of all random variables \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(\theta \cdot X)_T$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\theta $\end{document} is a predictable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $X$\end{document}-integrable process such that the stochastic integral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\theta \cdot X$\end{document} is in the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal S} ^2$\end{document} of semimartingales. We investigate under which conditions on the semimartingale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $X$\end{document} the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $G_T(\Theta )$\end{document} is closed in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal L} ^2(\Omega , {\cal F} ,P)$\end{document}, a question which arises naturally in the applications to financial mathematics. Our main results give necessary and/or sufficient conditions for the closedness of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $G_T(\Theta )$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal L} ^2(P)$\end{document}. Most of these conditions deal with BMO-martingales and reverse Hölder inequalities which are equivalent to weighted norm inequalities. By means of these last inequalities, we also extend previous results on the Föllmer-Schweizer decomposition.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N2188d5ab722f4d1a9636d1e0ea330806
17 N5c246abcfa504f488a28b9613235630f
18 sg:journal.1135992
19 schema:keywords Föllmer–Schweizer decomposition
20 Hölder inequality
21 Weighted norm inequalities
22 applications
23 canonical decomposition
24 closedness
25 conditions
26 decomposition
27 financial mathematics
28 incomplete markets
29 inequality
30 integrable processes
31 integrals
32 last inequality
33 main results
34 market
35 mathematics
36 means
37 norm inequalities
38 previous results
39 probability space
40 process
41 questions
42 random variables
43 results
44 semimartingales
45 space
46 special semimartingale
47 stochastic integrals
48 sufficient conditions
49 variables
50 schema:name Weighted norm inequalities and hedging in incomplete markets
51 schema:pagination 181-227
52 schema:productId N196fe4e9f1c645acb3a6002c80fd6798
53 Ne0c00b66070c447cad459b51a04d258d
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005349191
55 https://doi.org/10.1007/s007800050021
56 schema:sdDatePublished 2022-12-01T06:21
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N102b53b083ad43349b1e1fd470570989
59 schema:url https://doi.org/10.1007/s007800050021
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N102b53b083ad43349b1e1fd470570989 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N196fe4e9f1c645acb3a6002c80fd6798 schema:name dimensions_id
66 schema:value pub.1005349191
67 rdf:type schema:PropertyValue
68 N2188d5ab722f4d1a9636d1e0ea330806 schema:volumeNumber 1
69 rdf:type schema:PublicationVolume
70 N3b03e9ff9d1546978448242e849c7436 rdf:first sg:person.015141463327.89
71 rdf:rest N639fbca0b28a45a18fa9142cccdb718e
72 N5777cb835c3a4fa3b735d8f3ccd0e18f rdf:first sg:person.01363527717.15
73 rdf:rest Ndd9b7d6bcf5342bcb9d4c15ffd20d2de
74 N5c246abcfa504f488a28b9613235630f schema:issueNumber 3
75 rdf:type schema:PublicationIssue
76 N639fbca0b28a45a18fa9142cccdb718e rdf:first sg:person.010531035430.26
77 rdf:rest N5777cb835c3a4fa3b735d8f3ccd0e18f
78 N83c3caab7d4a43579c99eb34b21ee49c rdf:first sg:person.016436526230.58
79 rdf:rest N3b03e9ff9d1546978448242e849c7436
80 Ndd9b7d6bcf5342bcb9d4c15ffd20d2de rdf:first sg:person.010471303125.07
81 rdf:rest rdf:nil
82 Ne0c00b66070c447cad459b51a04d258d schema:name doi
83 schema:value 10.1007/s007800050021
84 rdf:type schema:PropertyValue
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
89 schema:name Statistics
90 rdf:type schema:DefinedTerm
91 sg:journal.1135992 schema:issn 0949-2984
92 1432-1122
93 schema:name Finance and Stochastics
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.010471303125.07 schema:affiliation grid-institutes:grid.463920.a
97 schema:familyName Stricker
98 schema:givenName Christophe
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010471303125.07
100 rdf:type schema:Person
101 sg:person.010531035430.26 schema:affiliation grid-institutes:grid.10420.37
102 schema:familyName Schachermayer
103 schema:givenName Walter
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010531035430.26
105 rdf:type schema:Person
106 sg:person.01363527717.15 schema:affiliation grid-institutes:grid.6734.6
107 schema:familyName Schweizer
108 schema:givenName Martin
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363527717.15
110 rdf:type schema:Person
111 sg:person.015141463327.89 schema:affiliation grid-institutes:grid.463920.a
112 schema:familyName Monat
113 schema:givenName Pascale
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141463327.89
115 rdf:type schema:Person
116 sg:person.016436526230.58 schema:affiliation grid-institutes:grid.5801.c
117 schema:familyName Delbaen
118 schema:givenName Freddy
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436526230.58
120 rdf:type schema:Person
121 sg:pub.10.1007/978-3-662-02619-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039786172
122 https://doi.org/10.1007/978-3-662-02619-9
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf01450498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006728418
125 https://doi.org/10.1007/bf01450498
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf02425803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029381977
128 https://doi.org/10.1007/bf02425803
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bfb0064607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025186938
131 https://doi.org/10.1007/bfb0064607
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bfb0073585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031807805
134 https://doi.org/10.1007/bfb0073585
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bfb0075772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027332361
137 https://doi.org/10.1007/bfb0075772
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bfb0094638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036973185
140 https://doi.org/10.1007/bfb0094638
141 rdf:type schema:CreativeWork
142 grid-institutes:grid.10420.37 schema:alternateName Universität Wien, Brünnerstrasse 72, A-1210 Wien, Austria, AT
143 schema:name Universität Wien, Brünnerstrasse 72, A-1210 Wien, Austria, AT
144 rdf:type schema:Organization
145 grid-institutes:grid.463920.a schema:alternateName Laboratoire de Mathématiques, URA CNRS 741, 16 Route de Gray, F-25030 Besançon Cedex, France, FR
146 schema:name Laboratoire de Mathématiques, URA CNRS 741, 16 Route de Gray, F-25030 Besançon Cedex, France, FR
147 rdf:type schema:Organization
148 grid-institutes:grid.5801.c schema:alternateName Department of Mathematics, Eidgenössische Technische Hochschule Zürich, CH-8092 Zürich, Switzerland, CH
149 schema:name Department of Mathematics, Eidgenössische Technische Hochschule Zürich, CH-8092 Zürich, Switzerland, CH
150 rdf:type schema:Organization
151 grid-institutes:grid.6734.6 schema:alternateName TU Berlin, Fachbereich Mathematik, Strasse des 17. Juni 136, D-10623 Berlin, Germany, DE
152 schema:name TU Berlin, Fachbereich Mathematik, Strasse des 17. Juni 136, D-10623 Berlin, Germany, DE
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...