A two-stage road traffic congestion prediction and resource dispatching toward a self-organizing traffic control system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Zied Bouyahia, Hedi Haddad, Nafaa Jabeur, Ansar Yasar

ABSTRACT

Since decades, road traffic congestions have been recognized as an escalating problem in many metropolitan areas worldwide. In addition to causing substantial number of casualties and high pollution rates, these congestions are decelerating economic growth by reducing mobility of people and goods as well as increasing the loss of working hours and fuel consumption. In order to deal with this problem, extensive research works have successively focused on predicting road traffic jams and then predicting their propagations. In spite of their relevance, the proposed solutions to traffic jam propagation have been profoundly dependent on historical data. They have not also used their predictions to intelligently allocate traffic control resources accordingly. We, therefore, propose in this paper a new two-stage traffic resource dispatching solution which is ultimately aiming to implement a self-organizing traffic control system based on Internet of Things. Our solution uses in its first phase a Markov Random Field (MRF) to model and predict the spread of traffic congestions over a road network. According to the obtained predictions, the solution uses Markov Decision Process (MDP) to automatically allocate the road traffic resources. Our simulations are showing satisfactory results in terms of efficient intervention ratios compared to other solutions. More... »

PAGES

1-12

References to SciGraph publications

  • 2016. Locating Emergency Services with Different Priorities: The Priority Queuing Covering Location Problem in OPERATIONAL RESEARCH FOR EMERGENCY PLANNING IN HEALTHCARE: VOLUME 1
  • 2014-11. Bi-criteria dynamic location-routing problem for patrol coverage in JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • 2011-12. Covering models and optimization techniques for emergency response facility location and planning: a review in MATHEMATICAL METHODS OF OPERATIONS RESEARCH
  • 2016. Optimal Allocation of Police Patrol Resources Using a Continuous-Time Crime Model in DECISION AND GAME THEORY FOR SECURITY
  • 2006. Towards Optimal Police Patrol Routes with Genetic Algorithms in INTELLIGENCE AND SECURITY INFORMATICS
  • 2017-02. Practical approach to determining traffic congestion propagation boundary due to traffic incidents in JOURNAL OF CENTRAL SOUTH UNIVERSITY
  • 2014-10. Location-allocation models for traffic police patrol vehicles on an interurban network in ANNALS OF OPERATIONS RESEARCH
  • 2015. Data Mining for Predicting Traffic Congestion and Its Application to Spanish Data in 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS
  • 2010-03. Determining Optimal Police Patrol Areas with Maximal Covering and Backup Covering Location Models in NETWORKS AND SPATIAL ECONOMICS
  • 1992-05. Q-learning in MACHINE LEARNING
  • 2009-06. Theoretical vs. empirical classification and prediction of congested traffic states in THE EUROPEAN PHYSICAL JOURNAL B
  • 2017-05-25. Predictive police patrolling to target hotspots and cover response demand in ANNALS OF OPERATIONS RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00779-019-01212-5

    DOI

    http://dx.doi.org/10.1007/s00779-019-01212-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113046954


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dhofar University", 
              "id": "https://www.grid.ac/institutes/grid.444761.4", 
              "name": [
                "Computer Science Department, Dhofar University, P.O. Box 2509, Post Code 211, Salalah, Sultanate of Oman"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bouyahia", 
            "givenName": "Zied", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dhofar University", 
              "id": "https://www.grid.ac/institutes/grid.444761.4", 
              "name": [
                "Computer Science Department, Dhofar University, P.O. Box 2509, Post Code 211, Salalah, Sultanate of Oman"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haddad", 
            "givenName": "Hedi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "German University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.440520.7", 
              "name": [
                "German University of Technology in Oman (GUtech), Athaibah, PO Box 1816, PC 130, Muscat, Sultanate of Oman"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jabeur", 
            "givenName": "Nafaa", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Hasselt", 
              "id": "https://www.grid.ac/institutes/grid.12155.32", 
              "name": [
                "Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5 bus 6, 3590, Diepenbeek, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yasar", 
            "givenName": "Ansar", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1098/rsta.2008.0018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003574773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0377-2217(02)00364-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008276000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0968-090x(00)00043-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008974848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11067-007-9035-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011546824", 
              "https://doi.org/10.1007/s11067-007-9035-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2009-00140-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015384131", 
              "https://doi.org/10.1140/epjb/e2009-00140-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-19719-7_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020951090", 
              "https://doi.org/10.1007/978-3-319-19719-7_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0031-3203(99)00074-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022521628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10479-012-1275-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026772909", 
              "https://doi.org/10.1007/s10479-012-1275-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dss.2015.04.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030070736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/jors.2013.116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030190558", 
              "https://doi.org/10.1057/jors.2013.116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00992698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033088958", 
              "https://doi.org/10.1007/bf00992698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2011.10.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034846177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0131962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035064989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2011.07.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038035606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00186-011-0363-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038628340", 
              "https://doi.org/10.1007/s00186-011-0363-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2013/905640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039817108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cor.2016.09.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042723479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sepro.2012.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044565395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trb.2010.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045507477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11760146_45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046452347", 
              "https://doi.org/10.1007/11760146_45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11760146_45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046452347", 
              "https://doi.org/10.1007/11760146_45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/9781137535696_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049624727", 
              "https://doi.org/10.1057/9781137535696_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2015/731492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051009291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/19488300.2012.710297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051663003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0965-0393/24/7/075005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059121749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.046205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060739651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.046205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060739651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/9.650016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061245484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbdata.2016.2587669", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061523300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/trsc.1070.0192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064734228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/ttj-2017-0003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084326754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-47413-7_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084894066", 
              "https://doi.org/10.1007/978-3-319-47413-7_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11771-017-3443-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085095529", 
              "https://doi.org/10.1007/s11771-017-3443-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11771-017-3443-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085095529", 
              "https://doi.org/10.1007/s11771-017-3443-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tdsc.2017.2703622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085511338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10479-017-2528-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085594314", 
              "https://doi.org/10.1007/s10479-017-2528-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10479-017-2528-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085594314", 
              "https://doi.org/10.1007/s10479-017-2528-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1687814017717184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091202052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1687814017717184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091202052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.omega.2017.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091323509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/ijgi6110362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092709397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isncc.2015.7238584", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093936078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icdm.2013.44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094635850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5220/0005705402610270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099443496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24200/sci.2017.20022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101029813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01605682.2018.1434401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101190117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01605682.2018.1434401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101190117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.trb.2018.02.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101386274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/mice.12384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105604213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09537287.2018.1494343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106161030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/pijpsm-02-2018-0027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106161494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3283207.3283213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107775212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3283207.3283213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107775212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s0102-865020180120000009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111178554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s0102-865020180120000009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111178554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s0102-865020180120000009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111178554"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-27", 
        "datePublishedReg": "2019-03-27", 
        "description": "Since decades, road traffic congestions have been recognized as an escalating problem in many metropolitan areas worldwide. In addition to causing substantial number of casualties and high pollution rates, these congestions are decelerating economic growth by reducing mobility of people and goods as well as increasing the loss of working hours and fuel consumption. In order to deal with this problem, extensive research works have successively focused on predicting road traffic jams and then predicting their propagations. In spite of their relevance, the proposed solutions to traffic jam propagation have been profoundly dependent on historical data. They have not also used their predictions to intelligently allocate traffic control resources accordingly. We, therefore, propose in this paper a new two-stage traffic resource dispatching solution which is ultimately aiming to implement a self-organizing traffic control system based on Internet of Things. Our solution uses in its first phase a Markov Random Field (MRF) to model and predict the spread of traffic congestions over a road network. According to the obtained predictions, the solution uses Markov Decision Process (MDP) to automatically allocate the road traffic resources. Our simulations are showing satisfactory results in terms of efficient intervention ratios compared to other solutions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00779-019-01212-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049837", 
            "issn": [
              "1617-4909", 
              "1617-4917"
            ], 
            "name": "Personal and Ubiquitous Computing", 
            "type": "Periodical"
          }
        ], 
        "name": "A two-stage road traffic congestion prediction and resource dispatching toward a self-organizing traffic control system", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b41bbe9528a41ca42a7c0c9efb26fcd941ce59f3c37d9306bdcfea731d7dce7e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00779-019-01212-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113046954"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00779-019-01212-5", 
          "https://app.dimensions.ai/details/publication/pub.1113046954"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78934_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00779-019-01212-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00779-019-01212-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00779-019-01212-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00779-019-01212-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00779-019-01212-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    231 TRIPLES      21 PREDICATES      71 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00779-019-01212-5 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Nfa5ac2e5bc914b549c7b10e3c9cc95e9
    4 schema:citation sg:pub.10.1007/11760146_45
    5 sg:pub.10.1007/978-3-319-19719-7_30
    6 sg:pub.10.1007/978-3-319-47413-7_9
    7 sg:pub.10.1007/bf00992698
    8 sg:pub.10.1007/s00186-011-0363-4
    9 sg:pub.10.1007/s10479-012-1275-2
    10 sg:pub.10.1007/s10479-017-2528-x
    11 sg:pub.10.1007/s11067-007-9035-6
    12 sg:pub.10.1007/s11771-017-3443-7
    13 sg:pub.10.1057/9781137535696_2
    14 sg:pub.10.1057/jors.2013.116
    15 sg:pub.10.1140/epjb/e2009-00140-5
    16 https://doi.org/10.1016/j.cor.2016.09.016
    17 https://doi.org/10.1016/j.dss.2015.04.012
    18 https://doi.org/10.1016/j.ejor.2011.10.043
    19 https://doi.org/10.1016/j.omega.2017.08.001
    20 https://doi.org/10.1016/j.physa.2011.07.004
    21 https://doi.org/10.1016/j.sepro.2012.04.006
    22 https://doi.org/10.1016/j.trb.2010.03.004
    23 https://doi.org/10.1016/j.trb.2018.02.014
    24 https://doi.org/10.1016/s0031-3203(99)00074-6
    25 https://doi.org/10.1016/s0377-2217(02)00364-8
    26 https://doi.org/10.1016/s0968-090x(00)00043-7
    27 https://doi.org/10.1080/01605682.2018.1434401
    28 https://doi.org/10.1080/09537287.2018.1494343
    29 https://doi.org/10.1080/19488300.2012.710297
    30 https://doi.org/10.1088/0965-0393/24/7/075005
    31 https://doi.org/10.1098/rsta.2008.0018
    32 https://doi.org/10.1103/physreve.80.046205
    33 https://doi.org/10.1108/pijpsm-02-2018-0027
    34 https://doi.org/10.1109/9.650016
    35 https://doi.org/10.1109/icdm.2013.44
    36 https://doi.org/10.1109/isncc.2015.7238584
    37 https://doi.org/10.1109/tbdata.2016.2587669
    38 https://doi.org/10.1109/tdsc.2017.2703622
    39 https://doi.org/10.1111/mice.12384
    40 https://doi.org/10.1145/3283207.3283213
    41 https://doi.org/10.1155/2013/905640
    42 https://doi.org/10.1155/2015/731492
    43 https://doi.org/10.1177/1687814017717184
    44 https://doi.org/10.1287/trsc.1070.0192
    45 https://doi.org/10.1371/journal.pone.0131962
    46 https://doi.org/10.1515/ttj-2017-0003
    47 https://doi.org/10.1590/s0102-865020180120000009
    48 https://doi.org/10.24200/sci.2017.20022
    49 https://doi.org/10.3390/ijgi6110362
    50 https://doi.org/10.5220/0005705402610270
    51 schema:datePublished 2019-03-27
    52 schema:datePublishedReg 2019-03-27
    53 schema:description Since decades, road traffic congestions have been recognized as an escalating problem in many metropolitan areas worldwide. In addition to causing substantial number of casualties and high pollution rates, these congestions are decelerating economic growth by reducing mobility of people and goods as well as increasing the loss of working hours and fuel consumption. In order to deal with this problem, extensive research works have successively focused on predicting road traffic jams and then predicting their propagations. In spite of their relevance, the proposed solutions to traffic jam propagation have been profoundly dependent on historical data. They have not also used their predictions to intelligently allocate traffic control resources accordingly. We, therefore, propose in this paper a new two-stage traffic resource dispatching solution which is ultimately aiming to implement a self-organizing traffic control system based on Internet of Things. Our solution uses in its first phase a Markov Random Field (MRF) to model and predict the spread of traffic congestions over a road network. According to the obtained predictions, the solution uses Markov Decision Process (MDP) to automatically allocate the road traffic resources. Our simulations are showing satisfactory results in terms of efficient intervention ratios compared to other solutions.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree false
    57 schema:isPartOf sg:journal.1049837
    58 schema:name A two-stage road traffic congestion prediction and resource dispatching toward a self-organizing traffic control system
    59 schema:pagination 1-12
    60 schema:productId N285f9b81f5b74c768ef9fc498fd30ed7
    61 Na5078ec01644432a84d716e8724bbf8c
    62 Nafb5ca2ff63d42d4a47ef30b9e9432fd
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113046954
    64 https://doi.org/10.1007/s00779-019-01212-5
    65 schema:sdDatePublished 2019-04-11T13:17
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher Nabe39c8b19f64c4ab1a6cd3f216cbfc8
    68 schema:url https://link.springer.com/10.1007%2Fs00779-019-01212-5
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N0058882866eb4ad5acfb3bb3c588877a schema:affiliation https://www.grid.ac/institutes/grid.440520.7
    73 schema:familyName Jabeur
    74 schema:givenName Nafaa
    75 rdf:type schema:Person
    76 N1ba4a9e654ac42bc87507bc57b108aae schema:affiliation https://www.grid.ac/institutes/grid.444761.4
    77 schema:familyName Haddad
    78 schema:givenName Hedi
    79 rdf:type schema:Person
    80 N285f9b81f5b74c768ef9fc498fd30ed7 schema:name readcube_id
    81 schema:value b41bbe9528a41ca42a7c0c9efb26fcd941ce59f3c37d9306bdcfea731d7dce7e
    82 rdf:type schema:PropertyValue
    83 N45f88ab72cfc421eb4fcab9d009c6548 rdf:first N1ba4a9e654ac42bc87507bc57b108aae
    84 rdf:rest Nc2992bc4c5e64a899bf6e3571d4601ad
    85 N6bcb1ba5f0cc46e6b32846bb86a77988 schema:affiliation https://www.grid.ac/institutes/grid.12155.32
    86 schema:familyName Yasar
    87 schema:givenName Ansar
    88 rdf:type schema:Person
    89 N901bd020ffcd4f7f8466b059194d7e77 schema:affiliation https://www.grid.ac/institutes/grid.444761.4
    90 schema:familyName Bouyahia
    91 schema:givenName Zied
    92 rdf:type schema:Person
    93 Na5078ec01644432a84d716e8724bbf8c schema:name doi
    94 schema:value 10.1007/s00779-019-01212-5
    95 rdf:type schema:PropertyValue
    96 Nabe39c8b19f64c4ab1a6cd3f216cbfc8 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 Nafb5ca2ff63d42d4a47ef30b9e9432fd schema:name dimensions_id
    99 schema:value pub.1113046954
    100 rdf:type schema:PropertyValue
    101 Nc2992bc4c5e64a899bf6e3571d4601ad rdf:first N0058882866eb4ad5acfb3bb3c588877a
    102 rdf:rest Nd5bdac62dea9416db47028979a66ad94
    103 Nd5bdac62dea9416db47028979a66ad94 rdf:first N6bcb1ba5f0cc46e6b32846bb86a77988
    104 rdf:rest rdf:nil
    105 Nfa5ac2e5bc914b549c7b10e3c9cc95e9 rdf:first N901bd020ffcd4f7f8466b059194d7e77
    106 rdf:rest N45f88ab72cfc421eb4fcab9d009c6548
    107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Mathematical Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Statistics
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1049837 schema:issn 1617-4909
    114 1617-4917
    115 schema:name Personal and Ubiquitous Computing
    116 rdf:type schema:Periodical
    117 sg:pub.10.1007/11760146_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046452347
    118 https://doi.org/10.1007/11760146_45
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/978-3-319-19719-7_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020951090
    121 https://doi.org/10.1007/978-3-319-19719-7_30
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/978-3-319-47413-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084894066
    124 https://doi.org/10.1007/978-3-319-47413-7_9
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf00992698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033088958
    127 https://doi.org/10.1007/bf00992698
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s00186-011-0363-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038628340
    130 https://doi.org/10.1007/s00186-011-0363-4
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s10479-012-1275-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026772909
    133 https://doi.org/10.1007/s10479-012-1275-2
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s10479-017-2528-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085594314
    136 https://doi.org/10.1007/s10479-017-2528-x
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s11067-007-9035-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011546824
    139 https://doi.org/10.1007/s11067-007-9035-6
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s11771-017-3443-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085095529
    142 https://doi.org/10.1007/s11771-017-3443-7
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1057/9781137535696_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049624727
    145 https://doi.org/10.1057/9781137535696_2
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1057/jors.2013.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030190558
    148 https://doi.org/10.1057/jors.2013.116
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1140/epjb/e2009-00140-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015384131
    151 https://doi.org/10.1140/epjb/e2009-00140-5
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.cor.2016.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042723479
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.dss.2015.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030070736
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.ejor.2011.10.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034846177
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.omega.2017.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091323509
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.physa.2011.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038035606
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.sepro.2012.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044565395
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.trb.2010.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045507477
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.trb.2018.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101386274
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/s0031-3203(99)00074-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022521628
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/s0377-2217(02)00364-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008276000
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/s0968-090x(00)00043-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008974848
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1080/01605682.2018.1434401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101190117
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1080/09537287.2018.1494343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106161030
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1080/19488300.2012.710297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051663003
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1088/0965-0393/24/7/075005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059121749
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1098/rsta.2008.0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003574773
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1103/physreve.80.046205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739651
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1108/pijpsm-02-2018-0027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106161494
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1109/9.650016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061245484
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1109/icdm.2013.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094635850
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1109/isncc.2015.7238584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093936078
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1109/tbdata.2016.2587669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061523300
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1109/tdsc.2017.2703622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085511338
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1111/mice.12384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105604213
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1145/3283207.3283213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107775212
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1155/2013/905640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039817108
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1155/2015/731492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051009291
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1177/1687814017717184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091202052
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1287/trsc.1070.0192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734228
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1371/journal.pone.0131962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035064989
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1515/ttj-2017-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084326754
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1590/s0102-865020180120000009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111178554
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.24200/sci.2017.20022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101029813
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.3390/ijgi6110362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092709397
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.5220/0005705402610270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099443496
    222 rdf:type schema:CreativeWork
    223 https://www.grid.ac/institutes/grid.12155.32 schema:alternateName University of Hasselt
    224 schema:name Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5 bus 6, 3590, Diepenbeek, Belgium
    225 rdf:type schema:Organization
    226 https://www.grid.ac/institutes/grid.440520.7 schema:alternateName German University of Technology
    227 schema:name German University of Technology in Oman (GUtech), Athaibah, PO Box 1816, PC 130, Muscat, Sultanate of Oman
    228 rdf:type schema:Organization
    229 https://www.grid.ac/institutes/grid.444761.4 schema:alternateName Dhofar University
    230 schema:name Computer Science Department, Dhofar University, P.O. Box 2509, Post Code 211, Salalah, Sultanate of Oman
    231 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...