A two-stage road traffic congestion prediction and resource dispatching toward a self-organizing traffic control system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Zied Bouyahia, Hedi Haddad, Nafaa Jabeur, Ansar Yasar

ABSTRACT

Since decades, road traffic congestions have been recognized as an escalating problem in many metropolitan areas worldwide. In addition to causing substantial number of casualties and high pollution rates, these congestions are decelerating economic growth by reducing mobility of people and goods as well as increasing the loss of working hours and fuel consumption. In order to deal with this problem, extensive research works have successively focused on predicting road traffic jams and then predicting their propagations. In spite of their relevance, the proposed solutions to traffic jam propagation have been profoundly dependent on historical data. They have not also used their predictions to intelligently allocate traffic control resources accordingly. We, therefore, propose in this paper a new two-stage traffic resource dispatching solution which is ultimately aiming to implement a self-organizing traffic control system based on Internet of Things. Our solution uses in its first phase a Markov Random Field (MRF) to model and predict the spread of traffic congestions over a road network. According to the obtained predictions, the solution uses Markov Decision Process (MDP) to automatically allocate the road traffic resources. Our simulations are showing satisfactory results in terms of efficient intervention ratios compared to other solutions. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00779-019-01212-5

DOI

http://dx.doi.org/10.1007/s00779-019-01212-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113046954


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dhofar University", 
          "id": "https://www.grid.ac/institutes/grid.444761.4", 
          "name": [
            "Computer Science Department, Dhofar University, P.O. Box 2509, Post Code 211, Salalah, Sultanate of Oman"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouyahia", 
        "givenName": "Zied", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dhofar University", 
          "id": "https://www.grid.ac/institutes/grid.444761.4", 
          "name": [
            "Computer Science Department, Dhofar University, P.O. Box 2509, Post Code 211, Salalah, Sultanate of Oman"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haddad", 
        "givenName": "Hedi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.440520.7", 
          "name": [
            "German University of Technology in Oman (GUtech), Athaibah, PO Box 1816, PC 130, Muscat, Sultanate of Oman"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jabeur", 
        "givenName": "Nafaa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hasselt", 
          "id": "https://www.grid.ac/institutes/grid.12155.32", 
          "name": [
            "Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5 bus 6, 3590, Diepenbeek, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasar", 
        "givenName": "Ansar", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1098/rsta.2008.0018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003574773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(02)00364-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008276000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-090x(00)00043-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008974848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11067-007-9035-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011546824", 
          "https://doi.org/10.1007/s11067-007-9035-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2009-00140-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015384131", 
          "https://doi.org/10.1140/epjb/e2009-00140-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-19719-7_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020951090", 
          "https://doi.org/10.1007/978-3-319-19719-7_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(99)00074-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022521628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-012-1275-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026772909", 
          "https://doi.org/10.1007/s10479-012-1275-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dss.2015.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030070736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/jors.2013.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030190558", 
          "https://doi.org/10.1057/jors.2013.116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00992698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033088958", 
          "https://doi.org/10.1007/bf00992698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2011.10.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034846177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0131962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035064989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2011.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038035606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00186-011-0363-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038628340", 
          "https://doi.org/10.1007/s00186-011-0363-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/905640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039817108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2016.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042723479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sepro.2012.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044565395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2010.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045507477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11760146_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046452347", 
          "https://doi.org/10.1007/11760146_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11760146_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046452347", 
          "https://doi.org/10.1007/11760146_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/9781137535696_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049624727", 
          "https://doi.org/10.1057/9781137535696_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/731492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051009291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19488300.2012.710297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051663003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0965-0393/24/7/075005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059121749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.046205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.046205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.650016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061245484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbdata.2016.2587669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061523300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.1070.0192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064734228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/ttj-2017-0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084326754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-47413-7_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084894066", 
          "https://doi.org/10.1007/978-3-319-47413-7_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11771-017-3443-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085095529", 
          "https://doi.org/10.1007/s11771-017-3443-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11771-017-3443-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085095529", 
          "https://doi.org/10.1007/s11771-017-3443-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tdsc.2017.2703622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085511338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-017-2528-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085594314", 
          "https://doi.org/10.1007/s10479-017-2528-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-017-2528-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085594314", 
          "https://doi.org/10.1007/s10479-017-2528-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1687814017717184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091202052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1687814017717184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091202052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.omega.2017.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091323509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijgi6110362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092709397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isncc.2015.7238584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093936078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2013.44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094635850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5220/0005705402610270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099443496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24200/sci.2017.20022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101029813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01605682.2018.1434401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101190117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01605682.2018.1434401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101190117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2018.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101386274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/mice.12384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105604213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09537287.2018.1494343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106161030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/pijpsm-02-2018-0027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106161494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3283207.3283213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107775212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3283207.3283213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107775212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0102-865020180120000009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111178554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0102-865020180120000009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111178554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0102-865020180120000009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111178554"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "Since decades, road traffic congestions have been recognized as an escalating problem in many metropolitan areas worldwide. In addition to causing substantial number of casualties and high pollution rates, these congestions are decelerating economic growth by reducing mobility of people and goods as well as increasing the loss of working hours and fuel consumption. In order to deal with this problem, extensive research works have successively focused on predicting road traffic jams and then predicting their propagations. In spite of their relevance, the proposed solutions to traffic jam propagation have been profoundly dependent on historical data. They have not also used their predictions to intelligently allocate traffic control resources accordingly. We, therefore, propose in this paper a new two-stage traffic resource dispatching solution which is ultimately aiming to implement a self-organizing traffic control system based on Internet of Things. Our solution uses in its first phase a Markov Random Field (MRF) to model and predict the spread of traffic congestions over a road network. According to the obtained predictions, the solution uses Markov Decision Process (MDP) to automatically allocate the road traffic resources. Our simulations are showing satisfactory results in terms of efficient intervention ratios compared to other solutions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00779-019-01212-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049837", 
        "issn": [
          "1617-4909", 
          "1617-4917"
        ], 
        "name": "Personal and Ubiquitous Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "A two-stage road traffic congestion prediction and resource dispatching toward a self-organizing traffic control system", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b41bbe9528a41ca42a7c0c9efb26fcd941ce59f3c37d9306bdcfea731d7dce7e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00779-019-01212-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113046954"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00779-019-01212-5", 
      "https://app.dimensions.ai/details/publication/pub.1113046954"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78934_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00779-019-01212-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00779-019-01212-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00779-019-01212-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00779-019-01212-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00779-019-01212-5'


 

This table displays all metadata directly associated to this object as RDF triples.

231 TRIPLES      21 PREDICATES      71 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00779-019-01212-5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N120b6e854b304d07a9391062f791519b
4 schema:citation sg:pub.10.1007/11760146_45
5 sg:pub.10.1007/978-3-319-19719-7_30
6 sg:pub.10.1007/978-3-319-47413-7_9
7 sg:pub.10.1007/bf00992698
8 sg:pub.10.1007/s00186-011-0363-4
9 sg:pub.10.1007/s10479-012-1275-2
10 sg:pub.10.1007/s10479-017-2528-x
11 sg:pub.10.1007/s11067-007-9035-6
12 sg:pub.10.1007/s11771-017-3443-7
13 sg:pub.10.1057/9781137535696_2
14 sg:pub.10.1057/jors.2013.116
15 sg:pub.10.1140/epjb/e2009-00140-5
16 https://doi.org/10.1016/j.cor.2016.09.016
17 https://doi.org/10.1016/j.dss.2015.04.012
18 https://doi.org/10.1016/j.ejor.2011.10.043
19 https://doi.org/10.1016/j.omega.2017.08.001
20 https://doi.org/10.1016/j.physa.2011.07.004
21 https://doi.org/10.1016/j.sepro.2012.04.006
22 https://doi.org/10.1016/j.trb.2010.03.004
23 https://doi.org/10.1016/j.trb.2018.02.014
24 https://doi.org/10.1016/s0031-3203(99)00074-6
25 https://doi.org/10.1016/s0377-2217(02)00364-8
26 https://doi.org/10.1016/s0968-090x(00)00043-7
27 https://doi.org/10.1080/01605682.2018.1434401
28 https://doi.org/10.1080/09537287.2018.1494343
29 https://doi.org/10.1080/19488300.2012.710297
30 https://doi.org/10.1088/0965-0393/24/7/075005
31 https://doi.org/10.1098/rsta.2008.0018
32 https://doi.org/10.1103/physreve.80.046205
33 https://doi.org/10.1108/pijpsm-02-2018-0027
34 https://doi.org/10.1109/9.650016
35 https://doi.org/10.1109/icdm.2013.44
36 https://doi.org/10.1109/isncc.2015.7238584
37 https://doi.org/10.1109/tbdata.2016.2587669
38 https://doi.org/10.1109/tdsc.2017.2703622
39 https://doi.org/10.1111/mice.12384
40 https://doi.org/10.1145/3283207.3283213
41 https://doi.org/10.1155/2013/905640
42 https://doi.org/10.1155/2015/731492
43 https://doi.org/10.1177/1687814017717184
44 https://doi.org/10.1287/trsc.1070.0192
45 https://doi.org/10.1371/journal.pone.0131962
46 https://doi.org/10.1515/ttj-2017-0003
47 https://doi.org/10.1590/s0102-865020180120000009
48 https://doi.org/10.24200/sci.2017.20022
49 https://doi.org/10.3390/ijgi6110362
50 https://doi.org/10.5220/0005705402610270
51 schema:datePublished 2019-03-27
52 schema:datePublishedReg 2019-03-27
53 schema:description Since decades, road traffic congestions have been recognized as an escalating problem in many metropolitan areas worldwide. In addition to causing substantial number of casualties and high pollution rates, these congestions are decelerating economic growth by reducing mobility of people and goods as well as increasing the loss of working hours and fuel consumption. In order to deal with this problem, extensive research works have successively focused on predicting road traffic jams and then predicting their propagations. In spite of their relevance, the proposed solutions to traffic jam propagation have been profoundly dependent on historical data. They have not also used their predictions to intelligently allocate traffic control resources accordingly. We, therefore, propose in this paper a new two-stage traffic resource dispatching solution which is ultimately aiming to implement a self-organizing traffic control system based on Internet of Things. Our solution uses in its first phase a Markov Random Field (MRF) to model and predict the spread of traffic congestions over a road network. According to the obtained predictions, the solution uses Markov Decision Process (MDP) to automatically allocate the road traffic resources. Our simulations are showing satisfactory results in terms of efficient intervention ratios compared to other solutions.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf sg:journal.1049837
58 schema:name A two-stage road traffic congestion prediction and resource dispatching toward a self-organizing traffic control system
59 schema:pagination 1-12
60 schema:productId N54ba07e48caa4d6a8cfaeb13a3e3e810
61 Nbc384d6faab148078cf5e6a86303a7e7
62 Ncc8127fca2b0421cb4518dafd390875b
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113046954
64 https://doi.org/10.1007/s00779-019-01212-5
65 schema:sdDatePublished 2019-04-11T13:17
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N0bfe79f4622b4eaebbd2fffbd6d35fc9
68 schema:url https://link.springer.com/10.1007%2Fs00779-019-01212-5
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0bfe79f4622b4eaebbd2fffbd6d35fc9 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N120b6e854b304d07a9391062f791519b rdf:first N45f2bb36adc24a05a573a33a210984be
75 rdf:rest N77f1b7b60f5e44dbb5e6085245fcef95
76 N45f2bb36adc24a05a573a33a210984be schema:affiliation https://www.grid.ac/institutes/grid.444761.4
77 schema:familyName Bouyahia
78 schema:givenName Zied
79 rdf:type schema:Person
80 N54ba07e48caa4d6a8cfaeb13a3e3e810 schema:name doi
81 schema:value 10.1007/s00779-019-01212-5
82 rdf:type schema:PropertyValue
83 N5a1497827de847c3b0974b9aee72321e schema:affiliation https://www.grid.ac/institutes/grid.440520.7
84 schema:familyName Jabeur
85 schema:givenName Nafaa
86 rdf:type schema:Person
87 N77f1b7b60f5e44dbb5e6085245fcef95 rdf:first Ncbd36af7e9954677b112189d0232da51
88 rdf:rest Nd5137da82cb84af8a6def98f357d829e
89 Nbc384d6faab148078cf5e6a86303a7e7 schema:name dimensions_id
90 schema:value pub.1113046954
91 rdf:type schema:PropertyValue
92 Ncbd36af7e9954677b112189d0232da51 schema:affiliation https://www.grid.ac/institutes/grid.444761.4
93 schema:familyName Haddad
94 schema:givenName Hedi
95 rdf:type schema:Person
96 Ncc8127fca2b0421cb4518dafd390875b schema:name readcube_id
97 schema:value b41bbe9528a41ca42a7c0c9efb26fcd941ce59f3c37d9306bdcfea731d7dce7e
98 rdf:type schema:PropertyValue
99 Nd40c7f2fd04b47e18dd0623f30d7d849 schema:affiliation https://www.grid.ac/institutes/grid.12155.32
100 schema:familyName Yasar
101 schema:givenName Ansar
102 rdf:type schema:Person
103 Nd5137da82cb84af8a6def98f357d829e rdf:first N5a1497827de847c3b0974b9aee72321e
104 rdf:rest Ndeb1b1dd2efb4495918e590c0b46ac11
105 Ndeb1b1dd2efb4495918e590c0b46ac11 rdf:first Nd40c7f2fd04b47e18dd0623f30d7d849
106 rdf:rest rdf:nil
107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
108 schema:name Mathematical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
111 schema:name Statistics
112 rdf:type schema:DefinedTerm
113 sg:journal.1049837 schema:issn 1617-4909
114 1617-4917
115 schema:name Personal and Ubiquitous Computing
116 rdf:type schema:Periodical
117 sg:pub.10.1007/11760146_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046452347
118 https://doi.org/10.1007/11760146_45
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-319-19719-7_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020951090
121 https://doi.org/10.1007/978-3-319-19719-7_30
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-3-319-47413-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084894066
124 https://doi.org/10.1007/978-3-319-47413-7_9
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf00992698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033088958
127 https://doi.org/10.1007/bf00992698
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00186-011-0363-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038628340
130 https://doi.org/10.1007/s00186-011-0363-4
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10479-012-1275-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026772909
133 https://doi.org/10.1007/s10479-012-1275-2
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10479-017-2528-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085594314
136 https://doi.org/10.1007/s10479-017-2528-x
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s11067-007-9035-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011546824
139 https://doi.org/10.1007/s11067-007-9035-6
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s11771-017-3443-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085095529
142 https://doi.org/10.1007/s11771-017-3443-7
143 rdf:type schema:CreativeWork
144 sg:pub.10.1057/9781137535696_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049624727
145 https://doi.org/10.1057/9781137535696_2
146 rdf:type schema:CreativeWork
147 sg:pub.10.1057/jors.2013.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030190558
148 https://doi.org/10.1057/jors.2013.116
149 rdf:type schema:CreativeWork
150 sg:pub.10.1140/epjb/e2009-00140-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015384131
151 https://doi.org/10.1140/epjb/e2009-00140-5
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.cor.2016.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042723479
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.dss.2015.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030070736
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ejor.2011.10.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034846177
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.omega.2017.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091323509
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.physa.2011.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038035606
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.sepro.2012.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044565395
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.trb.2010.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045507477
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.trb.2018.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101386274
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0031-3203(99)00074-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022521628
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0377-2217(02)00364-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008276000
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0968-090x(00)00043-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008974848
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1080/01605682.2018.1434401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101190117
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1080/09537287.2018.1494343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106161030
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1080/19488300.2012.710297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051663003
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1088/0965-0393/24/7/075005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059121749
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1098/rsta.2008.0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003574773
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physreve.80.046205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739651
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1108/pijpsm-02-2018-0027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106161494
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/9.650016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061245484
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/icdm.2013.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094635850
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/isncc.2015.7238584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093936078
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tbdata.2016.2587669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061523300
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/tdsc.2017.2703622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085511338
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/mice.12384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105604213
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1145/3283207.3283213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107775212
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1155/2013/905640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039817108
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1155/2015/731492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051009291
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1177/1687814017717184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091202052
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1287/trsc.1070.0192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734228
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1371/journal.pone.0131962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035064989
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1515/ttj-2017-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084326754
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1590/s0102-865020180120000009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111178554
216 rdf:type schema:CreativeWork
217 https://doi.org/10.24200/sci.2017.20022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101029813
218 rdf:type schema:CreativeWork
219 https://doi.org/10.3390/ijgi6110362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092709397
220 rdf:type schema:CreativeWork
221 https://doi.org/10.5220/0005705402610270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099443496
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.12155.32 schema:alternateName University of Hasselt
224 schema:name Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5 bus 6, 3590, Diepenbeek, Belgium
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.440520.7 schema:alternateName German University of Technology
227 schema:name German University of Technology in Oman (GUtech), Athaibah, PO Box 1816, PC 130, Muscat, Sultanate of Oman
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.444761.4 schema:alternateName Dhofar University
230 schema:name Computer Science Department, Dhofar University, P.O. Box 2509, Post Code 211, Salalah, Sultanate of Oman
231 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...