Resource-aware adaptive indexing for in situ visual exploration and analytics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-04-16

AUTHORS

Stavros Maroulis, Nikos Bikakis, George Papastefanatos, Panos Vassiliadis, Yannis Vassiliou

ABSTRACT

In in situ data management scenarios, large data files, which do not fit in main memory, must be efficiently handled using commodity hardware, without the overhead of a preprocessing phase or the loading of data into a database. In this work, we study the challenges posed by the visual analysis tasks in in situ scenarios in the presence of memory constraints. We present an indexing scheme and adaptive query evaluation techniques, which enable efficient categorical-based group-by and filter operations, combined with 2D visual interactions, such as exploration of data points on maps or scatter plots. The indexing scheme combines a tile-based structure, which offers efficient visual exploration over the 2D plane, with a tree-based structure, which organizes a tile’s objects based on its categorical values. The index is constructed on-the-fly, resides in main memory, and is built progressively as the user explores parts of the raw file, whereas its structure and level of granularity are adjusted to the user’s exploration areas and type of analysis. To handle the cases where limited resources are available, we introduce a resource-aware index initialization mechanism, we formulate it as an NP-hard optimization problem and we propose two efficient approximation algorithms to solve it. We conduct extensive experiments using real and synthetic datasets and demonstrate that our approach reports interactive query response times (less than 0.04sec) and in most cases is more than 100×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} faster and performs up to two orders of magnitude less I/O operations compared to existing solutions. The proposed methods are implemented as part of an open-source system for in situ visual exploration and analytics. More... »

PAGES

1-29

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00778-022-00739-z

DOI

http://dx.doi.org/10.1007/s00778-022-00739-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147164394


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nat. Tech. Univ. of Athens & ATHENA Research Center, Athens, Greece", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Nat. Tech. Univ. of Athens & ATHENA Research Center, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maroulis", 
        "givenName": "Stavros", 
        "id": "sg:person.016575033634.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016575033634.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ATHENA Research Center, Marousi, Greece", 
          "id": "http://www.grid.ac/institutes/grid.19843.37", 
          "name": [
            "ATHENA Research Center, Marousi, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bikakis", 
        "givenName": "Nikos", 
        "id": "sg:person.011561545441.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011561545441.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ATHENA Research Center, Marousi, Greece", 
          "id": "http://www.grid.ac/institutes/grid.19843.37", 
          "name": [
            "ATHENA Research Center, Marousi, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Papastefanatos", 
        "givenName": "George", 
        "id": "sg:person.013537667335.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013537667335.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Univ. of Ioannina, Ioannina, Greece", 
          "id": "http://www.grid.ac/institutes/grid.9594.1", 
          "name": [
            "Univ. of Ioannina, Ioannina, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vassiliadis", 
        "givenName": "Panos", 
        "id": "sg:person.015530525213.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015530525213.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nat. Tech. Univ. of Athens, Athens, Greece", 
          "id": "http://www.grid.ac/institutes/grid.5216.0", 
          "name": [
            "Nat. Tech. Univ. of Athens, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vassiliou", 
        "givenName": "Yannis", 
        "id": "sg:person.015431401132.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015431401132.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-98398-1_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105896220", 
          "https://doi.org/10.1007/978-3-319-98398-1_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009726021843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036995128", 
          "https://doi.org/10.1023/a:1009726021843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00778-013-0332-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029682448", 
          "https://doi.org/10.1007/s00778-013-0332-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10707-011-0141-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026712339", 
          "https://doi.org/10.1007/s10707-011-0141-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00778-015-0396-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003864112", 
          "https://doi.org/10.1007/s00778-015-0396-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-25639-9_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041439229", 
          "https://doi.org/10.1007/978-3-319-25639-9_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00778-019-00589-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122559222", 
          "https://doi.org/10.1007/s00778-019-00589-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00778-019-00580-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122622683", 
          "https://doi.org/10.1007/s00778-019-00580-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-04-16", 
    "datePublishedReg": "2022-04-16", 
    "description": "In in situ data management scenarios, large data files, which do not fit in main memory, must be efficiently handled using commodity hardware, without the overhead of a preprocessing phase or the loading of data into a database. In this work, we study the challenges posed by the visual analysis tasks in in situ scenarios in the presence of memory constraints. We present an indexing scheme and adaptive query evaluation techniques, which enable efficient categorical-based group-by and filter operations, combined with 2D visual interactions, such as exploration of data points on maps or scatter plots. The indexing scheme combines a tile-based structure, which offers efficient visual exploration over the 2D plane, with a tree-based structure, which organizes a tile\u2019s objects based on its categorical values. The index is constructed on-the-fly, resides in main memory, and is built progressively as the user explores parts of the raw file, whereas its structure and level of granularity are adjusted to the user\u2019s exploration areas and type of analysis. To handle the cases where limited resources are available, we introduce a resource-aware index initialization mechanism, we formulate it as an NP-hard optimization problem and we propose two efficient approximation algorithms to solve it. We conduct extensive experiments using real and synthetic datasets and demonstrate that our approach reports interactive query response times (less than 0.04sec) and in most cases is more than 100\u00d7\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\times $$\\end{document} faster and performs up to two orders of magnitude less I/O operations compared to existing solutions. The proposed methods are implemented as part of an open-source system for in situ visual exploration and analytics.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00778-022-00739-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044889", 
        "issn": [
          "1066-8888", 
          "0949-877X"
        ], 
        "name": "The VLDB Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "visual exploration", 
      "indexing scheme", 
      "main memory", 
      "interactive query response times", 
      "NP-hard optimization problem", 
      "query response time", 
      "query evaluation techniques", 
      "loading of data", 
      "visual analysis tasks", 
      "large data files", 
      "tree-based structure", 
      "open source systems", 
      "data management scenarios", 
      "levels of granularity", 
      "commodity hardware", 
      "adaptive indexing", 
      "analysis tasks", 
      "O operations", 
      "Extensive experiments", 
      "memory constraints", 
      "initialization mechanism", 
      "efficient visual exploration", 
      "synthetic datasets", 
      "visual interaction", 
      "tile-based structures", 
      "raw files", 
      "categorical values", 
      "optimization problem", 
      "data files", 
      "analytics", 
      "efficient approximation", 
      "limited resources", 
      "response time", 
      "files", 
      "data points", 
      "evaluation techniques", 
      "filter operation", 
      "situ scenarios", 
      "objects", 
      "scenarios", 
      "scheme", 
      "indexing", 
      "overhead", 
      "hardware", 
      "users", 
      "granularity", 
      "dataset", 
      "exploration area", 
      "memory", 
      "task", 
      "type of analysis", 
      "exploration", 
      "management scenarios", 
      "operation", 
      "scatter plots", 
      "database", 
      "constraints", 
      "resources", 
      "challenges", 
      "maps", 
      "system", 
      "technique", 
      "orders of magnitude", 
      "solution", 
      "work", 
      "data", 
      "order", 
      "part", 
      "experiments", 
      "method", 
      "flies", 
      "most cases", 
      "point", 
      "time", 
      "structure", 
      "approximation", 
      "area", 
      "cases", 
      "types", 
      "analysis", 
      "interaction", 
      "plane", 
      "mechanism", 
      "phase", 
      "values", 
      "levels", 
      "index", 
      "magnitude", 
      "plots", 
      "presence", 
      "loading", 
      "problem", 
      "approach"
    ], 
    "name": "Resource-aware adaptive indexing for in situ visual exploration and analytics", 
    "pagination": "1-29", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147164394"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00778-022-00739-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00778-022-00739-z", 
      "https://app.dimensions.ai/details/publication/pub.1147164394"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_930.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00778-022-00739-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00739-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00739-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00739-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00739-z'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      22 PREDICATES      125 URIs      108 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00778-022-00739-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author Nbe79bdbbdb934b7a9ba56c8d078962e6
5 schema:citation sg:pub.10.1007/978-3-319-25639-9_2
6 sg:pub.10.1007/978-3-319-98398-1_4
7 sg:pub.10.1007/s00778-013-0332-z
8 sg:pub.10.1007/s00778-015-0396-z
9 sg:pub.10.1007/s00778-019-00580-x
10 sg:pub.10.1007/s00778-019-00589-2
11 sg:pub.10.1007/s10707-011-0141-8
12 sg:pub.10.1023/a:1009726021843
13 schema:datePublished 2022-04-16
14 schema:datePublishedReg 2022-04-16
15 schema:description In in situ data management scenarios, large data files, which do not fit in main memory, must be efficiently handled using commodity hardware, without the overhead of a preprocessing phase or the loading of data into a database. In this work, we study the challenges posed by the visual analysis tasks in in situ scenarios in the presence of memory constraints. We present an indexing scheme and adaptive query evaluation techniques, which enable efficient categorical-based group-by and filter operations, combined with 2D visual interactions, such as exploration of data points on maps or scatter plots. The indexing scheme combines a tile-based structure, which offers efficient visual exploration over the 2D plane, with a tree-based structure, which organizes a tile’s objects based on its categorical values. The index is constructed on-the-fly, resides in main memory, and is built progressively as the user explores parts of the raw file, whereas its structure and level of granularity are adjusted to the user’s exploration areas and type of analysis. To handle the cases where limited resources are available, we introduce a resource-aware index initialization mechanism, we formulate it as an NP-hard optimization problem and we propose two efficient approximation algorithms to solve it. We conduct extensive experiments using real and synthetic datasets and demonstrate that our approach reports interactive query response times (less than 0.04sec) and in most cases is more than 100×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} faster and performs up to two orders of magnitude less I/O operations compared to existing solutions. The proposed methods are implemented as part of an open-source system for in situ visual exploration and analytics.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf sg:journal.1044889
20 schema:keywords Extensive experiments
21 NP-hard optimization problem
22 O operations
23 adaptive indexing
24 analysis
25 analysis tasks
26 analytics
27 approach
28 approximation
29 area
30 cases
31 categorical values
32 challenges
33 commodity hardware
34 constraints
35 data
36 data files
37 data management scenarios
38 data points
39 database
40 dataset
41 efficient approximation
42 efficient visual exploration
43 evaluation techniques
44 experiments
45 exploration
46 exploration area
47 files
48 filter operation
49 flies
50 granularity
51 hardware
52 index
53 indexing
54 indexing scheme
55 initialization mechanism
56 interaction
57 interactive query response times
58 large data files
59 levels
60 levels of granularity
61 limited resources
62 loading
63 loading of data
64 magnitude
65 main memory
66 management scenarios
67 maps
68 mechanism
69 memory
70 memory constraints
71 method
72 most cases
73 objects
74 open source systems
75 operation
76 optimization problem
77 order
78 orders of magnitude
79 overhead
80 part
81 phase
82 plane
83 plots
84 point
85 presence
86 problem
87 query evaluation techniques
88 query response time
89 raw files
90 resources
91 response time
92 scatter plots
93 scenarios
94 scheme
95 situ scenarios
96 solution
97 structure
98 synthetic datasets
99 system
100 task
101 technique
102 tile-based structures
103 time
104 tree-based structure
105 type of analysis
106 types
107 users
108 values
109 visual analysis tasks
110 visual exploration
111 visual interaction
112 work
113 schema:name Resource-aware adaptive indexing for in situ visual exploration and analytics
114 schema:pagination 1-29
115 schema:productId N212508b7d91c4e13b580d32aa41adf58
116 N29f5b5a4f8394c058a7ff489b4ca8f52
117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147164394
118 https://doi.org/10.1007/s00778-022-00739-z
119 schema:sdDatePublished 2022-06-01T22:23
120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
121 schema:sdPublisher Na0954c52b3744f9d927f07cbee30a58d
122 schema:url https://doi.org/10.1007/s00778-022-00739-z
123 sgo:license sg:explorer/license/
124 sgo:sdDataset articles
125 rdf:type schema:ScholarlyArticle
126 N212508b7d91c4e13b580d32aa41adf58 schema:name dimensions_id
127 schema:value pub.1147164394
128 rdf:type schema:PropertyValue
129 N29f5b5a4f8394c058a7ff489b4ca8f52 schema:name doi
130 schema:value 10.1007/s00778-022-00739-z
131 rdf:type schema:PropertyValue
132 N4a40fe0de09c41ea86173c4ab334533a rdf:first sg:person.013537667335.53
133 rdf:rest Nf94de81287bf4e82b4647a90570cbb99
134 N5f3fae981f7b4d53a3fe17fcb01558cc rdf:first sg:person.015431401132.15
135 rdf:rest rdf:nil
136 Na0954c52b3744f9d927f07cbee30a58d schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 Nbe79bdbbdb934b7a9ba56c8d078962e6 rdf:first sg:person.016575033634.29
139 rdf:rest Nf9b15b118fbb43ff8e9083561969a5bb
140 Nf94de81287bf4e82b4647a90570cbb99 rdf:first sg:person.015530525213.56
141 rdf:rest N5f3fae981f7b4d53a3fe17fcb01558cc
142 Nf9b15b118fbb43ff8e9083561969a5bb rdf:first sg:person.011561545441.41
143 rdf:rest N4a40fe0de09c41ea86173c4ab334533a
144 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
145 schema:name Information and Computing Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
148 schema:name Artificial Intelligence and Image Processing
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
151 schema:name Information Systems
152 rdf:type schema:DefinedTerm
153 sg:journal.1044889 schema:issn 0949-877X
154 1066-8888
155 schema:name The VLDB Journal
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.011561545441.41 schema:affiliation grid-institutes:grid.19843.37
159 schema:familyName Bikakis
160 schema:givenName Nikos
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011561545441.41
162 rdf:type schema:Person
163 sg:person.013537667335.53 schema:affiliation grid-institutes:grid.19843.37
164 schema:familyName Papastefanatos
165 schema:givenName George
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013537667335.53
167 rdf:type schema:Person
168 sg:person.015431401132.15 schema:affiliation grid-institutes:grid.5216.0
169 schema:familyName Vassiliou
170 schema:givenName Yannis
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015431401132.15
172 rdf:type schema:Person
173 sg:person.015530525213.56 schema:affiliation grid-institutes:grid.9594.1
174 schema:familyName Vassiliadis
175 schema:givenName Panos
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015530525213.56
177 rdf:type schema:Person
178 sg:person.016575033634.29 schema:affiliation grid-institutes:None
179 schema:familyName Maroulis
180 schema:givenName Stavros
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016575033634.29
182 rdf:type schema:Person
183 sg:pub.10.1007/978-3-319-25639-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041439229
184 https://doi.org/10.1007/978-3-319-25639-9_2
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/978-3-319-98398-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105896220
187 https://doi.org/10.1007/978-3-319-98398-1_4
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s00778-013-0332-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029682448
190 https://doi.org/10.1007/s00778-013-0332-z
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s00778-015-0396-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003864112
193 https://doi.org/10.1007/s00778-015-0396-z
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s00778-019-00580-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1122622683
196 https://doi.org/10.1007/s00778-019-00580-x
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s00778-019-00589-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122559222
199 https://doi.org/10.1007/s00778-019-00589-2
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s10707-011-0141-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026712339
202 https://doi.org/10.1007/s10707-011-0141-8
203 rdf:type schema:CreativeWork
204 sg:pub.10.1023/a:1009726021843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036995128
205 https://doi.org/10.1023/a:1009726021843
206 rdf:type schema:CreativeWork
207 grid-institutes:None schema:alternateName Nat. Tech. Univ. of Athens & ATHENA Research Center, Athens, Greece
208 schema:name Nat. Tech. Univ. of Athens & ATHENA Research Center, Athens, Greece
209 rdf:type schema:Organization
210 grid-institutes:grid.19843.37 schema:alternateName ATHENA Research Center, Marousi, Greece
211 schema:name ATHENA Research Center, Marousi, Greece
212 rdf:type schema:Organization
213 grid-institutes:grid.5216.0 schema:alternateName Nat. Tech. Univ. of Athens, Athens, Greece
214 schema:name Nat. Tech. Univ. of Athens, Athens, Greece
215 rdf:type schema:Organization
216 grid-institutes:grid.9594.1 schema:alternateName Univ. of Ioannina, Ioannina, Greece
217 schema:name Univ. of Ioannina, Ioannina, Greece
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...