2022-04-11
AUTHORSWenfei Fan, Ruiqi Xu, Qiang Yin, Wenyuan Yu, Jingren Zhou
ABSTRACTGraph partitioning is crucial to parallel computations on large graphs. The choice of partitioning strategies has strong impact on the performance of graph algorithms. For an algorithm of our interest, what partitioning strategy fits it the best and improves its parallel execution? Is it possible to provide a uniform partition to a batch of algorithms that run on the same graph simultaneously, and speed up each and every of them? This paper aims to answer these questions. We propose an application-driven hybrid partitioning strategy that, given a graph algorithm A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {A}}}$$\end{document}, learns a cost model for A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {A}}}$$\end{document} as polynomial regression. We develop partitioners that, given the learned cost model, refine an edge-cut or vertex-cut partition to a hybrid partition and reduce the parallel cost of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {A}}}$$\end{document}. Moreover, we extend the cost-driven strategy to support multiple algorithms at the same time and reduce the parallel cost of each of them. Using real-life and synthetic graphs, we experimentally verify that our partitioning strategy improves the performance of a variety of graph algorithms, up to 22.5×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22.5\times $$\end{document}. More... »
PAGES1-24
http://scigraph.springernature.com/pub.10.1007/s00778-022-00736-2
DOIhttp://dx.doi.org/10.1007/s00778-022-00736-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1147023077
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "BDBC, Beihang University, Beijing, China",
"id": "http://www.grid.ac/institutes/grid.64939.31",
"name": [
"University of Edinburgh, Edinburgh, UK",
"Shenzhen Institute of Computing Sciences, Shenzhen, China",
"BDBC, Beihang University, Beijing, China"
],
"type": "Organization"
},
"familyName": "Fan",
"givenName": "Wenfei",
"id": "sg:person.010530666126.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530666126.66"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Edinburgh, Edinburgh, UK",
"id": "http://www.grid.ac/institutes/grid.4305.2",
"name": [
"University of Edinburgh, Edinburgh, UK"
],
"type": "Organization"
},
"familyName": "Xu",
"givenName": "Ruiqi",
"id": "sg:person.07410304642.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410304642.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Shanghai Jiao Tong University, Shanghai, China",
"id": "http://www.grid.ac/institutes/grid.16821.3c",
"name": [
"Shanghai Jiao Tong University, Shanghai, China"
],
"type": "Organization"
},
"familyName": "Yin",
"givenName": "Qiang",
"id": "sg:person.014514553742.59",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014514553742.59"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Alibaba Group, Hangzhou, China",
"id": "http://www.grid.ac/institutes/grid.481558.5",
"name": [
"Alibaba Group, Hangzhou, China"
],
"type": "Organization"
},
"familyName": "Yu",
"givenName": "Wenyuan",
"id": "sg:person.014051321123.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014051321123.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Alibaba Group, Hangzhou, China",
"id": "http://www.grid.ac/institutes/grid.481558.5",
"name": [
"Alibaba Group, Hangzhou, China"
],
"type": "Organization"
},
"familyName": "Zhou",
"givenName": "Jingren",
"id": "sg:person.016056427127.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056427127.67"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-84800-998-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047271474",
"https://doi.org/10.1007/978-1-84800-998-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-387-09766-4_500",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042857469",
"https://doi.org/10.1007/978-0-387-09766-4_500"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00224-006-1350-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001099122",
"https://doi.org/10.1007/s00224-006-1350-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-49487-6_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007230701",
"https://doi.org/10.1007/978-3-319-49487-6_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/30918",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041985305",
"https://doi.org/10.1038/30918"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-04-11",
"datePublishedReg": "2022-04-11",
"description": "Graph partitioning is crucial to parallel computations on large graphs. The choice of partitioning strategies has strong impact on the performance of graph algorithms. For an algorithm of our interest, what partitioning strategy fits it the best and improves its parallel execution? Is it possible to provide a uniform partition to a batch of algorithms that run on the same graph simultaneously, and speed up each and every of them? This paper aims to answer these questions. We propose an application-driven hybrid partitioning strategy that, given a graph algorithm A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\mathcal {A}}}$$\\end{document}, learns a cost model for A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\mathcal {A}}}$$\\end{document} as polynomial regression. We develop partitioners that, given the learned cost model, refine an edge-cut or vertex-cut partition to a hybrid partition and reduce the parallel cost of A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\mathcal {A}}}$$\\end{document}. Moreover, we extend the cost-driven strategy to support multiple algorithms at the same time and reduce the parallel cost of each of them. Using real-life and synthetic graphs, we experimentally verify that our partitioning strategy improves the performance of a variety of graph algorithms, up to 22.5\u00d7\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$22.5\\times $$\\end{document}.",
"genre": "article",
"id": "sg:pub.10.1007/s00778-022-00736-2",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.4273689",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1044889",
"issn": [
"1066-8888",
"0949-877X"
],
"name": "The VLDB Journal",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"graph algorithms",
"parallel cost",
"graph partitioning",
"cost model",
"hybrid partitioning strategy",
"parallel execution",
"large graphs",
"synthetic graphs",
"multiple algorithms",
"hybrid partition",
"partitioning strategies",
"algorithm",
"graph",
"same graph",
"partition",
"polynomial regression",
"partitioner",
"execution",
"same time",
"uniform partition",
"partitioning",
"performance",
"computation",
"cost",
"model",
"strategies",
"interest",
"variety",
"time",
"strong impact",
"batch",
"choice",
"regression",
"questions",
"impact",
"paper"
],
"name": "Application-driven graph partitioning",
"pagination": "1-24",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1147023077"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00778-022-00736-2"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00778-022-00736-2",
"https://app.dimensions.ai/details/publication/pub.1147023077"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_928.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00778-022-00736-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00736-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00736-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00736-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00736-2'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
22 PREDICATES
64 URIs
51 LITERALS
4 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00778-022-00736-2 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N4d532229067c408b8b0c782747a1f3d5 |
4 | ″ | schema:citation | sg:pub.10.1007/978-0-387-09766-4_500 |
5 | ″ | ″ | sg:pub.10.1007/978-1-84800-998-1 |
6 | ″ | ″ | sg:pub.10.1007/978-3-319-49487-6_4 |
7 | ″ | ″ | sg:pub.10.1007/s00224-006-1350-7 |
8 | ″ | ″ | sg:pub.10.1038/30918 |
9 | ″ | schema:datePublished | 2022-04-11 |
10 | ″ | schema:datePublishedReg | 2022-04-11 |
11 | ″ | schema:description | Graph partitioning is crucial to parallel computations on large graphs. The choice of partitioning strategies has strong impact on the performance of graph algorithms. For an algorithm of our interest, what partitioning strategy fits it the best and improves its parallel execution? Is it possible to provide a uniform partition to a batch of algorithms that run on the same graph simultaneously, and speed up each and every of them? This paper aims to answer these questions. We propose an application-driven hybrid partitioning strategy that, given a graph algorithm A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {A}}}$$\end{document}, learns a cost model for A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {A}}}$$\end{document} as polynomial regression. We develop partitioners that, given the learned cost model, refine an edge-cut or vertex-cut partition to a hybrid partition and reduce the parallel cost of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {A}}}$$\end{document}. Moreover, we extend the cost-driven strategy to support multiple algorithms at the same time and reduce the parallel cost of each of them. Using real-life and synthetic graphs, we experimentally verify that our partitioning strategy improves the performance of a variety of graph algorithms, up to 22.5×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22.5\times $$\end{document}. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | sg:journal.1044889 |
16 | ″ | schema:keywords | algorithm |
17 | ″ | ″ | batch |
18 | ″ | ″ | choice |
19 | ″ | ″ | computation |
20 | ″ | ″ | cost |
21 | ″ | ″ | cost model |
22 | ″ | ″ | execution |
23 | ″ | ″ | graph |
24 | ″ | ″ | graph algorithms |
25 | ″ | ″ | graph partitioning |
26 | ″ | ″ | hybrid partition |
27 | ″ | ″ | hybrid partitioning strategy |
28 | ″ | ″ | impact |
29 | ″ | ″ | interest |
30 | ″ | ″ | large graphs |
31 | ″ | ″ | model |
32 | ″ | ″ | multiple algorithms |
33 | ″ | ″ | paper |
34 | ″ | ″ | parallel cost |
35 | ″ | ″ | parallel execution |
36 | ″ | ″ | partition |
37 | ″ | ″ | partitioner |
38 | ″ | ″ | partitioning |
39 | ″ | ″ | partitioning strategies |
40 | ″ | ″ | performance |
41 | ″ | ″ | polynomial regression |
42 | ″ | ″ | questions |
43 | ″ | ″ | regression |
44 | ″ | ″ | same graph |
45 | ″ | ″ | same time |
46 | ″ | ″ | strategies |
47 | ″ | ″ | strong impact |
48 | ″ | ″ | synthetic graphs |
49 | ″ | ″ | time |
50 | ″ | ″ | uniform partition |
51 | ″ | ″ | variety |
52 | ″ | schema:name | Application-driven graph partitioning |
53 | ″ | schema:pagination | 1-24 |
54 | ″ | schema:productId | N5387e049d1fd4d518371e6ebce12ee08 |
55 | ″ | ″ | Na273fd66427a4dd5afa1cc4e036c1710 |
56 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1147023077 |
57 | ″ | ″ | https://doi.org/10.1007/s00778-022-00736-2 |
58 | ″ | schema:sdDatePublished | 2022-06-01T22:25 |
59 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
60 | ″ | schema:sdPublisher | Naded1630b79c4d07921d368ae59cac60 |
61 | ″ | schema:url | https://doi.org/10.1007/s00778-022-00736-2 |
62 | ″ | sgo:license | sg:explorer/license/ |
63 | ″ | sgo:sdDataset | articles |
64 | ″ | rdf:type | schema:ScholarlyArticle |
65 | N329e5655991844b9a06be2881e186e86 | rdf:first | sg:person.014514553742.59 |
66 | ″ | rdf:rest | N5751c62163e9491bb5e60079f74eb357 |
67 | N42892e803e4f4ed5abd9c37fd7c72234 | rdf:first | sg:person.016056427127.67 |
68 | ″ | rdf:rest | rdf:nil |
69 | N4d532229067c408b8b0c782747a1f3d5 | rdf:first | sg:person.010530666126.66 |
70 | ″ | rdf:rest | Nf328dd33529541d691ff33b2f6f0d06a |
71 | N5387e049d1fd4d518371e6ebce12ee08 | schema:name | doi |
72 | ″ | schema:value | 10.1007/s00778-022-00736-2 |
73 | ″ | rdf:type | schema:PropertyValue |
74 | N5751c62163e9491bb5e60079f74eb357 | rdf:first | sg:person.014051321123.34 |
75 | ″ | rdf:rest | N42892e803e4f4ed5abd9c37fd7c72234 |
76 | Na273fd66427a4dd5afa1cc4e036c1710 | schema:name | dimensions_id |
77 | ″ | schema:value | pub.1147023077 |
78 | ″ | rdf:type | schema:PropertyValue |
79 | Naded1630b79c4d07921d368ae59cac60 | schema:name | Springer Nature - SN SciGraph project |
80 | ″ | rdf:type | schema:Organization |
81 | Nf328dd33529541d691ff33b2f6f0d06a | rdf:first | sg:person.07410304642.12 |
82 | ″ | rdf:rest | N329e5655991844b9a06be2881e186e86 |
83 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
84 | ″ | schema:name | Information and Computing Sciences |
85 | ″ | rdf:type | schema:DefinedTerm |
86 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
87 | ″ | schema:name | Computation Theory and Mathematics |
88 | ″ | rdf:type | schema:DefinedTerm |
89 | sg:grant.4273689 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00778-022-00736-2 |
90 | ″ | rdf:type | schema:MonetaryGrant |
91 | sg:journal.1044889 | schema:issn | 0949-877X |
92 | ″ | ″ | 1066-8888 |
93 | ″ | schema:name | The VLDB Journal |
94 | ″ | schema:publisher | Springer Nature |
95 | ″ | rdf:type | schema:Periodical |
96 | sg:person.010530666126.66 | schema:affiliation | grid-institutes:grid.64939.31 |
97 | ″ | schema:familyName | Fan |
98 | ″ | schema:givenName | Wenfei |
99 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530666126.66 |
100 | ″ | rdf:type | schema:Person |
101 | sg:person.014051321123.34 | schema:affiliation | grid-institutes:grid.481558.5 |
102 | ″ | schema:familyName | Yu |
103 | ″ | schema:givenName | Wenyuan |
104 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014051321123.34 |
105 | ″ | rdf:type | schema:Person |
106 | sg:person.014514553742.59 | schema:affiliation | grid-institutes:grid.16821.3c |
107 | ″ | schema:familyName | Yin |
108 | ″ | schema:givenName | Qiang |
109 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014514553742.59 |
110 | ″ | rdf:type | schema:Person |
111 | sg:person.016056427127.67 | schema:affiliation | grid-institutes:grid.481558.5 |
112 | ″ | schema:familyName | Zhou |
113 | ″ | schema:givenName | Jingren |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056427127.67 |
115 | ″ | rdf:type | schema:Person |
116 | sg:person.07410304642.12 | schema:affiliation | grid-institutes:grid.4305.2 |
117 | ″ | schema:familyName | Xu |
118 | ″ | schema:givenName | Ruiqi |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410304642.12 |
120 | ″ | rdf:type | schema:Person |
121 | sg:pub.10.1007/978-0-387-09766-4_500 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042857469 |
122 | ″ | ″ | https://doi.org/10.1007/978-0-387-09766-4_500 |
123 | ″ | rdf:type | schema:CreativeWork |
124 | sg:pub.10.1007/978-1-84800-998-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047271474 |
125 | ″ | ″ | https://doi.org/10.1007/978-1-84800-998-1 |
126 | ″ | rdf:type | schema:CreativeWork |
127 | sg:pub.10.1007/978-3-319-49487-6_4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007230701 |
128 | ″ | ″ | https://doi.org/10.1007/978-3-319-49487-6_4 |
129 | ″ | rdf:type | schema:CreativeWork |
130 | sg:pub.10.1007/s00224-006-1350-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001099122 |
131 | ″ | ″ | https://doi.org/10.1007/s00224-006-1350-7 |
132 | ″ | rdf:type | schema:CreativeWork |
133 | sg:pub.10.1038/30918 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041985305 |
134 | ″ | ″ | https://doi.org/10.1038/30918 |
135 | ″ | rdf:type | schema:CreativeWork |
136 | grid-institutes:grid.16821.3c | schema:alternateName | Shanghai Jiao Tong University, Shanghai, China |
137 | ″ | schema:name | Shanghai Jiao Tong University, Shanghai, China |
138 | ″ | rdf:type | schema:Organization |
139 | grid-institutes:grid.4305.2 | schema:alternateName | University of Edinburgh, Edinburgh, UK |
140 | ″ | schema:name | University of Edinburgh, Edinburgh, UK |
141 | ″ | rdf:type | schema:Organization |
142 | grid-institutes:grid.481558.5 | schema:alternateName | Alibaba Group, Hangzhou, China |
143 | ″ | schema:name | Alibaba Group, Hangzhou, China |
144 | ″ | rdf:type | schema:Organization |
145 | grid-institutes:grid.64939.31 | schema:alternateName | BDBC, Beihang University, Beijing, China |
146 | ″ | schema:name | BDBC, Beihang University, Beijing, China |
147 | ″ | ″ | Shenzhen Institute of Computing Sciences, Shenzhen, China |
148 | ″ | ″ | University of Edinburgh, Edinburgh, UK |
149 | ″ | rdf:type | schema:Organization |