Application-driven graph partitioning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-04-11

AUTHORS

Wenfei Fan, Ruiqi Xu, Qiang Yin, Wenyuan Yu, Jingren Zhou

ABSTRACT

Graph partitioning is crucial to parallel computations on large graphs. The choice of partitioning strategies has strong impact on the performance of graph algorithms. For an algorithm of our interest, what partitioning strategy fits it the best and improves its parallel execution? Is it possible to provide a uniform partition to a batch of algorithms that run on the same graph simultaneously, and speed up each and every of them? This paper aims to answer these questions. We propose an application-driven hybrid partitioning strategy that, given a graph algorithm A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {A}}}$$\end{document}, learns a cost model for A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {A}}}$$\end{document} as polynomial regression. We develop partitioners that, given the learned cost model, refine an edge-cut or vertex-cut partition to a hybrid partition and reduce the parallel cost of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {A}}}$$\end{document}. Moreover, we extend the cost-driven strategy to support multiple algorithms at the same time and reduce the parallel cost of each of them. Using real-life and synthetic graphs, we experimentally verify that our partitioning strategy improves the performance of a variety of graph algorithms, up to 22.5×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22.5\times $$\end{document}. More... »

PAGES

1-24

References to SciGraph publications

  • 1998-06. Collective dynamics of ‘small-world’ networks in NATURE
  • 2009. Digraphs, Theory, Algorithms and Applications in NONE
  • 2006-10-20. Balanced Graph Partitioning in THEORY OF COMPUTING SYSTEMS
  • 2016-11-11. Recent Advances in Graph Partitioning in ALGORITHM ENGINEERING
  • 2011. METIS and ParMETIS in ENCYCLOPEDIA OF PARALLEL COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00778-022-00736-2

    DOI

    http://dx.doi.org/10.1007/s00778-022-00736-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147023077


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "BDBC, Beihang University, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.64939.31", 
              "name": [
                "University of Edinburgh, Edinburgh, UK", 
                "Shenzhen Institute of Computing Sciences, Shenzhen, China", 
                "BDBC, Beihang University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fan", 
            "givenName": "Wenfei", 
            "id": "sg:person.010530666126.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530666126.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Edinburgh, Edinburgh, UK", 
              "id": "http://www.grid.ac/institutes/grid.4305.2", 
              "name": [
                "University of Edinburgh, Edinburgh, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Ruiqi", 
            "id": "sg:person.07410304642.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410304642.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Jiao Tong University, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.16821.3c", 
              "name": [
                "Shanghai Jiao Tong University, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yin", 
            "givenName": "Qiang", 
            "id": "sg:person.014514553742.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014514553742.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Alibaba Group, Hangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.481558.5", 
              "name": [
                "Alibaba Group, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Wenyuan", 
            "id": "sg:person.014051321123.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014051321123.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Alibaba Group, Hangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.481558.5", 
              "name": [
                "Alibaba Group, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Jingren", 
            "id": "sg:person.016056427127.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056427127.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-84800-998-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047271474", 
              "https://doi.org/10.1007/978-1-84800-998-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-09766-4_500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042857469", 
              "https://doi.org/10.1007/978-0-387-09766-4_500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00224-006-1350-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001099122", 
              "https://doi.org/10.1007/s00224-006-1350-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-49487-6_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007230701", 
              "https://doi.org/10.1007/978-3-319-49487-6_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985305", 
              "https://doi.org/10.1038/30918"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-04-11", 
        "datePublishedReg": "2022-04-11", 
        "description": "Graph partitioning is crucial to parallel computations on large graphs. The choice of partitioning strategies has strong impact on the performance of graph algorithms. For an algorithm of our interest, what partitioning strategy fits it the best and improves its parallel execution? Is it possible to provide a uniform partition to a batch of algorithms that run on the same graph simultaneously, and speed up each and every of them? This paper aims to answer these questions. We propose an application-driven hybrid partitioning strategy that, given a graph algorithm A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\mathcal {A}}}$$\\end{document}, learns a cost model for A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\mathcal {A}}}$$\\end{document} as polynomial regression. We develop partitioners that, given the learned cost model, refine an edge-cut or vertex-cut partition to a hybrid partition and reduce the parallel cost of A\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\mathcal {A}}}$$\\end{document}. Moreover, we extend the cost-driven strategy to support multiple algorithms at the same time and reduce the parallel cost of each of them. Using real-life and synthetic graphs, we experimentally verify that our partitioning strategy improves the performance of a variety of graph algorithms, up to 22.5\u00d7\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$22.5\\times $$\\end{document}.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00778-022-00736-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4273689", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1044889", 
            "issn": [
              "1066-8888", 
              "0949-877X"
            ], 
            "name": "The VLDB Journal", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "graph algorithms", 
          "parallel cost", 
          "graph partitioning", 
          "cost model", 
          "hybrid partitioning strategy", 
          "parallel execution", 
          "large graphs", 
          "synthetic graphs", 
          "multiple algorithms", 
          "hybrid partition", 
          "partitioning strategies", 
          "algorithm", 
          "graph", 
          "same graph", 
          "partition", 
          "polynomial regression", 
          "partitioner", 
          "execution", 
          "same time", 
          "uniform partition", 
          "partitioning", 
          "performance", 
          "computation", 
          "cost", 
          "model", 
          "strategies", 
          "interest", 
          "variety", 
          "time", 
          "strong impact", 
          "batch", 
          "choice", 
          "regression", 
          "questions", 
          "impact", 
          "paper"
        ], 
        "name": "Application-driven graph partitioning", 
        "pagination": "1-24", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147023077"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00778-022-00736-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00778-022-00736-2", 
          "https://app.dimensions.ai/details/publication/pub.1147023077"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_928.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00778-022-00736-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00736-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00736-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00736-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00736-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    149 TRIPLES      22 PREDICATES      64 URIs      51 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00778-022-00736-2 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author N4d532229067c408b8b0c782747a1f3d5
    4 schema:citation sg:pub.10.1007/978-0-387-09766-4_500
    5 sg:pub.10.1007/978-1-84800-998-1
    6 sg:pub.10.1007/978-3-319-49487-6_4
    7 sg:pub.10.1007/s00224-006-1350-7
    8 sg:pub.10.1038/30918
    9 schema:datePublished 2022-04-11
    10 schema:datePublishedReg 2022-04-11
    11 schema:description Graph partitioning is crucial to parallel computations on large graphs. The choice of partitioning strategies has strong impact on the performance of graph algorithms. For an algorithm of our interest, what partitioning strategy fits it the best and improves its parallel execution? Is it possible to provide a uniform partition to a batch of algorithms that run on the same graph simultaneously, and speed up each and every of them? This paper aims to answer these questions. We propose an application-driven hybrid partitioning strategy that, given a graph algorithm A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {A}}}$$\end{document}, learns a cost model for A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {A}}}$$\end{document} as polynomial regression. We develop partitioners that, given the learned cost model, refine an edge-cut or vertex-cut partition to a hybrid partition and reduce the parallel cost of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {A}}}$$\end{document}. Moreover, we extend the cost-driven strategy to support multiple algorithms at the same time and reduce the parallel cost of each of them. Using real-life and synthetic graphs, we experimentally verify that our partitioning strategy improves the performance of a variety of graph algorithms, up to 22.5×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$22.5\times $$\end{document}.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf sg:journal.1044889
    16 schema:keywords algorithm
    17 batch
    18 choice
    19 computation
    20 cost
    21 cost model
    22 execution
    23 graph
    24 graph algorithms
    25 graph partitioning
    26 hybrid partition
    27 hybrid partitioning strategy
    28 impact
    29 interest
    30 large graphs
    31 model
    32 multiple algorithms
    33 paper
    34 parallel cost
    35 parallel execution
    36 partition
    37 partitioner
    38 partitioning
    39 partitioning strategies
    40 performance
    41 polynomial regression
    42 questions
    43 regression
    44 same graph
    45 same time
    46 strategies
    47 strong impact
    48 synthetic graphs
    49 time
    50 uniform partition
    51 variety
    52 schema:name Application-driven graph partitioning
    53 schema:pagination 1-24
    54 schema:productId N5387e049d1fd4d518371e6ebce12ee08
    55 Na273fd66427a4dd5afa1cc4e036c1710
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147023077
    57 https://doi.org/10.1007/s00778-022-00736-2
    58 schema:sdDatePublished 2022-06-01T22:25
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher Naded1630b79c4d07921d368ae59cac60
    61 schema:url https://doi.org/10.1007/s00778-022-00736-2
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N329e5655991844b9a06be2881e186e86 rdf:first sg:person.014514553742.59
    66 rdf:rest N5751c62163e9491bb5e60079f74eb357
    67 N42892e803e4f4ed5abd9c37fd7c72234 rdf:first sg:person.016056427127.67
    68 rdf:rest rdf:nil
    69 N4d532229067c408b8b0c782747a1f3d5 rdf:first sg:person.010530666126.66
    70 rdf:rest Nf328dd33529541d691ff33b2f6f0d06a
    71 N5387e049d1fd4d518371e6ebce12ee08 schema:name doi
    72 schema:value 10.1007/s00778-022-00736-2
    73 rdf:type schema:PropertyValue
    74 N5751c62163e9491bb5e60079f74eb357 rdf:first sg:person.014051321123.34
    75 rdf:rest N42892e803e4f4ed5abd9c37fd7c72234
    76 Na273fd66427a4dd5afa1cc4e036c1710 schema:name dimensions_id
    77 schema:value pub.1147023077
    78 rdf:type schema:PropertyValue
    79 Naded1630b79c4d07921d368ae59cac60 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 Nf328dd33529541d691ff33b2f6f0d06a rdf:first sg:person.07410304642.12
    82 rdf:rest N329e5655991844b9a06be2881e186e86
    83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Information and Computing Sciences
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Computation Theory and Mathematics
    88 rdf:type schema:DefinedTerm
    89 sg:grant.4273689 http://pending.schema.org/fundedItem sg:pub.10.1007/s00778-022-00736-2
    90 rdf:type schema:MonetaryGrant
    91 sg:journal.1044889 schema:issn 0949-877X
    92 1066-8888
    93 schema:name The VLDB Journal
    94 schema:publisher Springer Nature
    95 rdf:type schema:Periodical
    96 sg:person.010530666126.66 schema:affiliation grid-institutes:grid.64939.31
    97 schema:familyName Fan
    98 schema:givenName Wenfei
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530666126.66
    100 rdf:type schema:Person
    101 sg:person.014051321123.34 schema:affiliation grid-institutes:grid.481558.5
    102 schema:familyName Yu
    103 schema:givenName Wenyuan
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014051321123.34
    105 rdf:type schema:Person
    106 sg:person.014514553742.59 schema:affiliation grid-institutes:grid.16821.3c
    107 schema:familyName Yin
    108 schema:givenName Qiang
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014514553742.59
    110 rdf:type schema:Person
    111 sg:person.016056427127.67 schema:affiliation grid-institutes:grid.481558.5
    112 schema:familyName Zhou
    113 schema:givenName Jingren
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056427127.67
    115 rdf:type schema:Person
    116 sg:person.07410304642.12 schema:affiliation grid-institutes:grid.4305.2
    117 schema:familyName Xu
    118 schema:givenName Ruiqi
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410304642.12
    120 rdf:type schema:Person
    121 sg:pub.10.1007/978-0-387-09766-4_500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042857469
    122 https://doi.org/10.1007/978-0-387-09766-4_500
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-1-84800-998-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047271474
    125 https://doi.org/10.1007/978-1-84800-998-1
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-319-49487-6_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007230701
    128 https://doi.org/10.1007/978-3-319-49487-6_4
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s00224-006-1350-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001099122
    131 https://doi.org/10.1007/s00224-006-1350-7
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
    134 https://doi.org/10.1038/30918
    135 rdf:type schema:CreativeWork
    136 grid-institutes:grid.16821.3c schema:alternateName Shanghai Jiao Tong University, Shanghai, China
    137 schema:name Shanghai Jiao Tong University, Shanghai, China
    138 rdf:type schema:Organization
    139 grid-institutes:grid.4305.2 schema:alternateName University of Edinburgh, Edinburgh, UK
    140 schema:name University of Edinburgh, Edinburgh, UK
    141 rdf:type schema:Organization
    142 grid-institutes:grid.481558.5 schema:alternateName Alibaba Group, Hangzhou, China
    143 schema:name Alibaba Group, Hangzhou, China
    144 rdf:type schema:Organization
    145 grid-institutes:grid.64939.31 schema:alternateName BDBC, Beihang University, Beijing, China
    146 schema:name BDBC, Beihang University, Beijing, China
    147 Shenzhen Institute of Computing Sciences, Shenzhen, China
    148 University of Edinburgh, Edinburgh, UK
    149 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...