Making graphs compact by lossless contraction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-02-19

AUTHORS

Wenfei Fan, Yuanhao Li, Muyang Liu, Can Lu

ABSTRACT

This paper proposes a scheme to reduce big graphs to small graphs. It contracts obsolete parts and regular structures into supernodes. The supernodes carry a synopsis SQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\mathcal {Q}$$\end{document} for each query class Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}$$\end{document} in use, to abstract key features of the contracted parts for answering queries of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}$$\end{document}. Moreover, for various types of graphs, we identify regular structures to contract. The contraction scheme provides a compact graph representation and prioritizes up-to-date data. Better still, it is generic and lossless. We show that the same contracted graph is able to support multiple query classes at the same time, no matter whether their queries are label based or not, local or non-local. Moreover, existing algorithms for these queries can be readily adapted to compute exact answers by using the synopses when possible and decontracting the supernodes only when necessary. As a proof of concept, we show how to adapt existing algorithms for subgraph isomorphism, triangle counting, shortest distance, connected component and clique decision to contracted graphs. We also provide a bounded incremental contraction algorithm in response to updates, such that its cost is determined by the size of areas affected by the updates alone, not by the entire graphs. We experimentally verify that on average, the contraction scheme reduces graphs by 71.9% and improves the evaluation of these queries by 1.69, 1.44, 1.47, 2.24 and 1.37 times, respectively. More... »

PAGES

1-25

References to SciGraph publications

  • 2011-06-14. Community detection in Social Media in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2019-04-24. Multi-level Graph Compression for Fast Reachability Detection in DATABASE SYSTEMS FOR ADVANCED APPLICATIONS
  • 2001-09-03. Communities of Interest in ADVANCES IN INTELLIGENT DATA ANALYSIS
  • 2011. A Discussion on the Design of Graph Database Benchmarks in PERFORMANCE EVALUATION, MEASUREMENT AND CHARACTERIZATION OF COMPLEX SYSTEMS
  • 2016-05-24. MIMIC-III, a freely accessible critical care database in SCIENTIFIC DATA
  • 1999-09. Diameter of the World-Wide Web in NATURE
  • 1959-12. A note on two problems in connexion with graphs in NUMERISCHE MATHEMATIK
  • 1998-06. Collective dynamics of ‘small-world’ networks in NATURE
  • 2008-01-01. What Is Frequent in a Single Graph? in ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00778-022-00731-7

    DOI

    http://dx.doi.org/10.1007/s00778-022-00731-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1145717696


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "BDBC, Beihang University, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.64939.31", 
              "name": [
                "University of Edinburgh, Edinburgh, UK", 
                "Shenzhen Institute of Computing Sciences, Shenzhen, China", 
                "BDBC, Beihang University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fan", 
            "givenName": "Wenfei", 
            "id": "sg:person.010530666126.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530666126.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Edinburgh, Edinburgh, UK", 
              "id": "http://www.grid.ac/institutes/grid.4305.2", 
              "name": [
                "University of Edinburgh, Edinburgh, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yuanhao", 
            "id": "sg:person.014010701261.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014010701261.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Edinburgh, Edinburgh, UK", 
              "id": "http://www.grid.ac/institutes/grid.4305.2", 
              "name": [
                "University of Edinburgh, Edinburgh, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Muyang", 
            "id": "sg:person.013017546073.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013017546073.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen Institute of Computing Sciences, Shenzhen, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Shenzhen Institute of Computing Sciences, Shenzhen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Can", 
            "id": "sg:person.015132346775.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015132346775.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/sdata.2016.35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039633073", 
              "https://doi.org/10.1038/sdata.2016.35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-18579-4_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113642198", 
              "https://doi.org/10.1007/978-3-030-18579-4_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68125-0_84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015857389", 
              "https://doi.org/10.1007/978-3-540-68125-0_84"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-18206-8_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025089564", 
              "https://doi.org/10.1007/978-3-642-18206-8_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-011-0224-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017664270", 
              "https://doi.org/10.1007/s10618-011-0224-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44816-0_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024211106", 
              "https://doi.org/10.1007/3-540-44816-0_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/43601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009550067", 
              "https://doi.org/10.1038/43601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01386390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041716633", 
              "https://doi.org/10.1007/bf01386390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985305", 
              "https://doi.org/10.1038/30918"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-02-19", 
        "datePublishedReg": "2022-02-19", 
        "description": "This paper proposes a scheme to reduce big graphs to small graphs. It contracts obsolete parts and regular structures into supernodes. The supernodes carry a synopsis SQ\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$S_\\mathcal {Q}$$\\end{document} for each query class Q\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal {Q}$$\\end{document} in use, to abstract key features of the contracted parts for answering queries of Q\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal {Q}$$\\end{document}. Moreover, for various types of graphs, we identify regular structures to contract. The contraction scheme provides a compact graph representation and prioritizes up-to-date data. Better still, it is generic and lossless. We show that the same contracted graph is able to support multiple query classes at the same time, no matter whether their queries are label based or not, local or non-local. Moreover, existing algorithms for these queries can be readily adapted to compute exact answers by using the synopses when possible and decontracting the supernodes only when necessary. As a proof of concept, we show how to adapt existing algorithms for subgraph isomorphism, triangle counting, shortest distance, connected component and clique decision to contracted graphs. We also provide a bounded incremental contraction algorithm in response to updates, such that its cost is determined by the size of areas affected by the updates alone, not by the entire graphs. We experimentally verify that on average, the contraction scheme reduces graphs by 71.9% and improves the evaluation of these queries by 1.69, 1.44, 1.47, 2.24 and 1.37 times, respectively.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00778-022-00731-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4273689", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4576785", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1044889", 
            "issn": [
              "1066-8888", 
              "0949-877X"
            ], 
            "name": "The VLDB Journal", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "query classes", 
          "compact graph representation", 
          "big graphs", 
          "triangle counting", 
          "subgraph isomorphism", 
          "queries", 
          "graph representation", 
          "types of graphs", 
          "entire graph", 
          "supernodes", 
          "small graphs", 
          "exact answer", 
          "proof of concept", 
          "contraction algorithm", 
          "algorithm", 
          "graph", 
          "regular structure", 
          "obsolete parts", 
          "scheme", 
          "date data", 
          "key features", 
          "update", 
          "same time", 
          "labels", 
          "representation", 
          "cost", 
          "proof", 
          "decisions", 
          "features", 
          "class", 
          "concept", 
          "time", 
          "answers", 
          "counting", 
          "contraction scheme", 
          "data", 
          "part", 
          "evaluation", 
          "synopsis", 
          "isomorphism", 
          "size of area", 
          "distance", 
          "use", 
          "short distances", 
          "components", 
          "structure", 
          "area", 
          "types", 
          "size", 
          "response", 
          "contraction", 
          "paper"
        ], 
        "name": "Making graphs compact by lossless contraction", 
        "pagination": "1-25", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1145717696"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00778-022-00731-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00778-022-00731-7", 
          "https://app.dimensions.ai/details/publication/pub.1145717696"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_941.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00778-022-00731-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00731-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00731-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00731-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00778-022-00731-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    173 TRIPLES      22 PREDICATES      84 URIs      67 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00778-022-00731-7 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N446097b5d41f4aa495ee98dc52064b30
    4 schema:citation sg:pub.10.1007/3-540-44816-0_11
    5 sg:pub.10.1007/978-3-030-18579-4_14
    6 sg:pub.10.1007/978-3-540-68125-0_84
    7 sg:pub.10.1007/978-3-642-18206-8_3
    8 sg:pub.10.1007/bf01386390
    9 sg:pub.10.1007/s10618-011-0224-z
    10 sg:pub.10.1038/30918
    11 sg:pub.10.1038/43601
    12 sg:pub.10.1038/sdata.2016.35
    13 schema:datePublished 2022-02-19
    14 schema:datePublishedReg 2022-02-19
    15 schema:description This paper proposes a scheme to reduce big graphs to small graphs. It contracts obsolete parts and regular structures into supernodes. The supernodes carry a synopsis SQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\mathcal {Q}$$\end{document} for each query class Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}$$\end{document} in use, to abstract key features of the contracted parts for answering queries of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}$$\end{document}. Moreover, for various types of graphs, we identify regular structures to contract. The contraction scheme provides a compact graph representation and prioritizes up-to-date data. Better still, it is generic and lossless. We show that the same contracted graph is able to support multiple query classes at the same time, no matter whether their queries are label based or not, local or non-local. Moreover, existing algorithms for these queries can be readily adapted to compute exact answers by using the synopses when possible and decontracting the supernodes only when necessary. As a proof of concept, we show how to adapt existing algorithms for subgraph isomorphism, triangle counting, shortest distance, connected component and clique decision to contracted graphs. We also provide a bounded incremental contraction algorithm in response to updates, such that its cost is determined by the size of areas affected by the updates alone, not by the entire graphs. We experimentally verify that on average, the contraction scheme reduces graphs by 71.9% and improves the evaluation of these queries by 1.69, 1.44, 1.47, 2.24 and 1.37 times, respectively.
    16 schema:genre article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf sg:journal.1044889
    20 schema:keywords algorithm
    21 answers
    22 area
    23 big graphs
    24 class
    25 compact graph representation
    26 components
    27 concept
    28 contraction
    29 contraction algorithm
    30 contraction scheme
    31 cost
    32 counting
    33 data
    34 date data
    35 decisions
    36 distance
    37 entire graph
    38 evaluation
    39 exact answer
    40 features
    41 graph
    42 graph representation
    43 isomorphism
    44 key features
    45 labels
    46 obsolete parts
    47 paper
    48 part
    49 proof
    50 proof of concept
    51 queries
    52 query classes
    53 regular structure
    54 representation
    55 response
    56 same time
    57 scheme
    58 short distances
    59 size
    60 size of area
    61 small graphs
    62 structure
    63 subgraph isomorphism
    64 supernodes
    65 synopsis
    66 time
    67 triangle counting
    68 types
    69 types of graphs
    70 update
    71 use
    72 schema:name Making graphs compact by lossless contraction
    73 schema:pagination 1-25
    74 schema:productId N3292f6ded0f14ffdb946165769ea19aa
    75 Na56cebb32cf64f9b97dd43a00d749990
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145717696
    77 https://doi.org/10.1007/s00778-022-00731-7
    78 schema:sdDatePublished 2022-06-01T22:26
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher N0e5373d21d184ce0a5636aa54c8530da
    81 schema:url https://doi.org/10.1007/s00778-022-00731-7
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N0e5373d21d184ce0a5636aa54c8530da schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 N3292f6ded0f14ffdb946165769ea19aa schema:name doi
    88 schema:value 10.1007/s00778-022-00731-7
    89 rdf:type schema:PropertyValue
    90 N376148e6d15f4f8993cd1790c5f1da4d rdf:first sg:person.015132346775.46
    91 rdf:rest rdf:nil
    92 N446097b5d41f4aa495ee98dc52064b30 rdf:first sg:person.010530666126.66
    93 rdf:rest N45b9273fdced4fc994484b84c3bc4dda
    94 N45b9273fdced4fc994484b84c3bc4dda rdf:first sg:person.014010701261.81
    95 rdf:rest Nb7b18f4a3dce40e4b81c46218d336d23
    96 Na56cebb32cf64f9b97dd43a00d749990 schema:name dimensions_id
    97 schema:value pub.1145717696
    98 rdf:type schema:PropertyValue
    99 Nb7b18f4a3dce40e4b81c46218d336d23 rdf:first sg:person.013017546073.65
    100 rdf:rest N376148e6d15f4f8993cd1790c5f1da4d
    101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Information and Computing Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Information Systems
    106 rdf:type schema:DefinedTerm
    107 sg:grant.4273689 http://pending.schema.org/fundedItem sg:pub.10.1007/s00778-022-00731-7
    108 rdf:type schema:MonetaryGrant
    109 sg:grant.4576785 http://pending.schema.org/fundedItem sg:pub.10.1007/s00778-022-00731-7
    110 rdf:type schema:MonetaryGrant
    111 sg:journal.1044889 schema:issn 0949-877X
    112 1066-8888
    113 schema:name The VLDB Journal
    114 schema:publisher Springer Nature
    115 rdf:type schema:Periodical
    116 sg:person.010530666126.66 schema:affiliation grid-institutes:grid.64939.31
    117 schema:familyName Fan
    118 schema:givenName Wenfei
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530666126.66
    120 rdf:type schema:Person
    121 sg:person.013017546073.65 schema:affiliation grid-institutes:grid.4305.2
    122 schema:familyName Liu
    123 schema:givenName Muyang
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013017546073.65
    125 rdf:type schema:Person
    126 sg:person.014010701261.81 schema:affiliation grid-institutes:grid.4305.2
    127 schema:familyName Li
    128 schema:givenName Yuanhao
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014010701261.81
    130 rdf:type schema:Person
    131 sg:person.015132346775.46 schema:affiliation grid-institutes:None
    132 schema:familyName Lu
    133 schema:givenName Can
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015132346775.46
    135 rdf:type schema:Person
    136 sg:pub.10.1007/3-540-44816-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024211106
    137 https://doi.org/10.1007/3-540-44816-0_11
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/978-3-030-18579-4_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113642198
    140 https://doi.org/10.1007/978-3-030-18579-4_14
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-3-540-68125-0_84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015857389
    143 https://doi.org/10.1007/978-3-540-68125-0_84
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/978-3-642-18206-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025089564
    146 https://doi.org/10.1007/978-3-642-18206-8_3
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf01386390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041716633
    149 https://doi.org/10.1007/bf01386390
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s10618-011-0224-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017664270
    152 https://doi.org/10.1007/s10618-011-0224-z
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
    155 https://doi.org/10.1038/30918
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/43601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009550067
    158 https://doi.org/10.1038/43601
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/sdata.2016.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039633073
    161 https://doi.org/10.1038/sdata.2016.35
    162 rdf:type schema:CreativeWork
    163 grid-institutes:None schema:alternateName Shenzhen Institute of Computing Sciences, Shenzhen, China
    164 schema:name Shenzhen Institute of Computing Sciences, Shenzhen, China
    165 rdf:type schema:Organization
    166 grid-institutes:grid.4305.2 schema:alternateName University of Edinburgh, Edinburgh, UK
    167 schema:name University of Edinburgh, Edinburgh, UK
    168 rdf:type schema:Organization
    169 grid-institutes:grid.64939.31 schema:alternateName BDBC, Beihang University, Beijing, China
    170 schema:name BDBC, Beihang University, Beijing, China
    171 Shenzhen Institute of Computing Sciences, Shenzhen, China
    172 University of Edinburgh, Edinburgh, UK
    173 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...