A survey on outlier explanations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-01-26

AUTHORS

Egawati Panjei, Le Gruenwald, Eleazar Leal, Christopher Nguyen, Shejuti Silvia

ABSTRACT

While many techniques for outlier detection have been proposed in the literature, the interpretation of detected outliers is often left to users. As a result, it is difficult for users to promptly take appropriate actions concerning the detected outliers. To lessen this difficulty, when outliers are identified, they should be presented together with their explanations. There are survey papers on outlier detection, but none exists for outlier explanations. To fill this gap, in this paper, we present a survey on outlier explanations in which meaningful knowledge is mined from anomalous data to explain them. We define different types of outlier explanations and discuss the challenges in generating each type. We review the existing outlier explanation techniques and discuss how they address the challenges. We also discuss the applications of outlier explanations and review the existing methods used to evaluate outlier explanations. Furthermore, we discuss possible future research directions. More... »

PAGES

1-32

References to SciGraph publications

  • 2009. Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data in ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING
  • 2019-01-18. Solving the False Positives Problem in Fraud Prediction Using Automated Feature Engineering in MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES
  • 2012-11-16. Characteristics and classification of outlier detection techniques for wireless sensor networks in harsh environments: a survey in ARTIFICIAL INTELLIGENCE REVIEW
  • 2018-08-02. Explaining anomalies in groups with characterizing subspace rules in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2019-01-18. Beyond Outlier Detection: LookOut for Pictorial Explanation in MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES
  • 2017-08-31. On the Role of Distributed Computing in Big Data Analytics in DISTRIBUTED COMPUTING IN BIG DATA ANALYTICS
  • 2004-10. A Survey of Outlier Detection Methodologies in ARTIFICIAL INTELLIGENCE REVIEW
  • 2017. Outlier Analysis in NONE
  • 2015-06-02. Discovering Traffic Outlier Causal Relationship Based on Anomalous DAG in ADVANCES IN SWARM AND COMPUTATIONAL INTELLIGENCE
  • 2011. A Survey of Outlier Detection Methodologies and Their Applications in ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE
  • 2015-10-01. Big data analytics: a survey in JOURNAL OF BIG DATA
  • 1980. Identification of Outliers in NONE
  • 1995-09. Support-vector networks in MACHINE LEARNING
  • 2017-08-31. Distributed Computing Technologies in Big Data Analytics in DISTRIBUTED COMPUTING IN BIG DATA ANALYTICS
  • 2019-05-12. Anomaly Detection in Network Traffic Security Assurance in ENGINEERING IN DEPENDABILITY OF COMPUTER SYSTEMS AND NETWORKS
  • 1999-01-15. Discovering Frequent Closed Itemsets for Association Rules in DATABASE THEORY — ICDT’99
  • 2020-04-30. Black Box Explanation by Learning Image Exemplars in the Latent Feature Space in MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES
  • 2014-07-05. Graph based anomaly detection and description: a survey in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2016-11-23. Anomaly Detection of Spectrum in Wireless Communication via Deep Autoencoder in ADVANCES IN COMPUTER SCIENCE AND UBIQUITOUS COMPUTING
  • 2020-06-17. Coronavirus misinformation, and how scientists can help to fight it in NATURE
  • 2013. Local Outlier Detection with Interpretation in ADVANCED INFORMATION SYSTEMS ENGINEERING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00778-021-00721-1

    DOI

    http://dx.doi.org/10.1007/s00778-021-00721-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1144978072

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35095253


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0805", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Distributed Computing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Computer Science, The University of Oklahoma, Norman, OK, USA", 
              "id": "http://www.grid.ac/institutes/grid.266900.b", 
              "name": [
                "School of Computer Science, The University of Oklahoma, Norman, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Panjei", 
            "givenName": "Egawati", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Computer Science, The University of Oklahoma, Norman, OK, USA", 
              "id": "http://www.grid.ac/institutes/grid.266900.b", 
              "name": [
                "School of Computer Science, The University of Oklahoma, Norman, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gruenwald", 
            "givenName": "Le", 
            "id": "sg:person.010425433674.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010425433674.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Minnesota Duluth, Duluth, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.266744.5", 
              "name": [
                "Department of Computer Science, University of Minnesota Duluth, Duluth, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Leal", 
            "givenName": "Eleazar", 
            "id": "sg:person.015270057533.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015270057533.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Computer Science, The University of Oklahoma, Norman, OK, USA", 
              "id": "http://www.grid.ac/institutes/grid.266900.b", 
              "name": [
                "School of Computer Science, The University of Oklahoma, Norman, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nguyen", 
            "givenName": "Christopher", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Computer Science, The University of Oklahoma, Norman, OK, USA", 
              "id": "http://www.grid.ac/institutes/grid.266900.b", 
              "name": [
                "School of Computer Science, The University of Oklahoma, Norman, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Silvia", 
            "givenName": "Shejuti", 
            "id": "sg:person.014270622462.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270622462.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/d41586-020-01834-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128562342", 
              "https://doi.org/10.1038/d41586-020-01834-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01307-2_86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034820545", 
              "https://doi.org/10.1007/978-3-642-01307-2_86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-49257-7_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048579740", 
              "https://doi.org/10.1007/3-540-49257-7_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-10925-7_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111517573", 
              "https://doi.org/10.1007/978-3-030-10925-7_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-014-0365-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038929817", 
              "https://doi.org/10.1007/s10618-014-0365-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23881-9_50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052665150", 
              "https://doi.org/10.1007/978-3-642-23881-9_50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-012-9370-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038224467", 
              "https://doi.org/10.1007/s10462-012-9370-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-20472-7_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049368860", 
              "https://doi.org/10.1007/978-3-319-20472-7_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:aire.0000045502.10941.a9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014095928", 
              "https://doi.org/10.1023/b:aire.0000045502.10941.a9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-59834-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091391637", 
              "https://doi.org/10.1007/978-3-319-59834-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-46150-8_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127249624", 
              "https://doi.org/10.1007/978-3-030-46150-8_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-19501-4_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114100102", 
              "https://doi.org/10.1007/978-3-030-19501-4_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-40994-3_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005398381", 
              "https://doi.org/10.1007/978-3-642-40994-3_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00994018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025150743", 
              "https://doi.org/10.1007/bf00994018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-018-0585-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105945016", 
              "https://doi.org/10.1007/s10618-018-0585-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40537-015-0030-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049457707", 
              "https://doi.org/10.1186/s40537-015-0030-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-47578-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033321832", 
              "https://doi.org/10.1007/978-3-319-47578-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-3994-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053674345", 
              "https://doi.org/10.1007/978-94-015-3994-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-10-3023-9_42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090347378", 
              "https://doi.org/10.1007/978-981-10-3023-9_42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-59834-5_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091401362", 
              "https://doi.org/10.1007/978-3-319-59834-5_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-10997-4_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111517591", 
              "https://doi.org/10.1007/978-3-030-10997-4_23"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-01-26", 
        "datePublishedReg": "2022-01-26", 
        "description": "While many techniques for outlier detection have been proposed in the literature, the interpretation of detected outliers is often left to users. As a result, it is difficult for users to promptly take appropriate actions concerning the detected outliers. To lessen this difficulty, when outliers are identified, they should be presented together with their explanations. There are survey papers on outlier detection, but none exists for outlier explanations. To fill this gap, in this paper, we present a survey on outlier explanations in which meaningful knowledge is mined from anomalous data to explain them. We define different types of outlier explanations and discuss the challenges in generating each type. We review the existing outlier explanation techniques and discuss how they address the challenges. We also discuss the applications of outlier explanations and review the existing methods used to evaluate outlier explanations. Furthermore, we discuss possible future research directions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00778-021-00721-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1044889", 
            "issn": [
              "1066-8888", 
              "0949-877X"
            ], 
            "name": "The VLDB Journal", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "survey", 
          "detection", 
          "literature", 
          "appropriate action", 
          "action", 
          "different types", 
          "types", 
          "challenges", 
          "technique", 
          "results", 
          "difficulties", 
          "explanation", 
          "knowledge", 
          "data", 
          "future research directions", 
          "interpretation", 
          "users", 
          "gap", 
          "explanation techniques", 
          "method", 
          "research directions", 
          "outliers", 
          "applications", 
          "possible future research directions", 
          "direction", 
          "paper", 
          "meaningful knowledge", 
          "anomalous data", 
          "outlier detection", 
          "survey paper"
        ], 
        "name": "A survey on outlier explanations", 
        "pagination": "1-32", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1144978072"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00778-021-00721-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35095253"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00778-021-00721-1", 
          "https://app.dimensions.ai/details/publication/pub.1144978072"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_942.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00778-021-00721-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00778-021-00721-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00778-021-00721-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00778-021-00721-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00778-021-00721-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    207 TRIPLES      22 PREDICATES      77 URIs      46 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00778-021-00721-1 schema:about anzsrc-for:08
    2 anzsrc-for:0804
    3 anzsrc-for:0805
    4 anzsrc-for:0806
    5 schema:author N0c1beb45944c444589e42654fdf3c3d8
    6 schema:citation sg:pub.10.1007/3-540-49257-7_25
    7 sg:pub.10.1007/978-3-030-10925-7_8
    8 sg:pub.10.1007/978-3-030-10997-4_23
    9 sg:pub.10.1007/978-3-030-19501-4_5
    10 sg:pub.10.1007/978-3-030-46150-8_12
    11 sg:pub.10.1007/978-3-319-20472-7_8
    12 sg:pub.10.1007/978-3-319-47578-3
    13 sg:pub.10.1007/978-3-319-59834-5_1
    14 sg:pub.10.1007/978-3-319-59834-5_4
    15 sg:pub.10.1007/978-3-642-01307-2_86
    16 sg:pub.10.1007/978-3-642-23881-9_50
    17 sg:pub.10.1007/978-3-642-40994-3_20
    18 sg:pub.10.1007/978-94-015-3994-4
    19 sg:pub.10.1007/978-981-10-3023-9_42
    20 sg:pub.10.1007/bf00994018
    21 sg:pub.10.1007/s10462-012-9370-y
    22 sg:pub.10.1007/s10618-014-0365-y
    23 sg:pub.10.1007/s10618-018-0585-7
    24 sg:pub.10.1023/b:aire.0000045502.10941.a9
    25 sg:pub.10.1038/d41586-020-01834-3
    26 sg:pub.10.1186/s40537-015-0030-3
    27 schema:datePublished 2022-01-26
    28 schema:datePublishedReg 2022-01-26
    29 schema:description While many techniques for outlier detection have been proposed in the literature, the interpretation of detected outliers is often left to users. As a result, it is difficult for users to promptly take appropriate actions concerning the detected outliers. To lessen this difficulty, when outliers are identified, they should be presented together with their explanations. There are survey papers on outlier detection, but none exists for outlier explanations. To fill this gap, in this paper, we present a survey on outlier explanations in which meaningful knowledge is mined from anomalous data to explain them. We define different types of outlier explanations and discuss the challenges in generating each type. We review the existing outlier explanation techniques and discuss how they address the challenges. We also discuss the applications of outlier explanations and review the existing methods used to evaluate outlier explanations. Furthermore, we discuss possible future research directions.
    30 schema:genre article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf sg:journal.1044889
    34 schema:keywords action
    35 anomalous data
    36 applications
    37 appropriate action
    38 challenges
    39 data
    40 detection
    41 different types
    42 difficulties
    43 direction
    44 explanation
    45 explanation techniques
    46 future research directions
    47 gap
    48 interpretation
    49 knowledge
    50 literature
    51 meaningful knowledge
    52 method
    53 outlier detection
    54 outliers
    55 paper
    56 possible future research directions
    57 research directions
    58 results
    59 survey
    60 survey paper
    61 technique
    62 types
    63 users
    64 schema:name A survey on outlier explanations
    65 schema:pagination 1-32
    66 schema:productId N846699d96712476c8a68e803ad2c8362
    67 Na68c8ae38c7846a5903560663450a225
    68 Nf8d49ceee9b44fd083df345bdf7f68e2
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144978072
    70 https://doi.org/10.1007/s00778-021-00721-1
    71 schema:sdDatePublished 2022-06-01T22:25
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N12f01fcb49be4017ac3ba4830e0612a0
    74 schema:url https://doi.org/10.1007/s00778-021-00721-1
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N0c1beb45944c444589e42654fdf3c3d8 rdf:first N4d53744433164e70995181560cf8dd5c
    79 rdf:rest Ne6ab9053d3fa4401a5ac2e5f36821674
    80 N12f01fcb49be4017ac3ba4830e0612a0 schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 N218dc9e26c774b2698db488813836ebc schema:affiliation grid-institutes:grid.266900.b
    83 schema:familyName Nguyen
    84 schema:givenName Christopher
    85 rdf:type schema:Person
    86 N4d53744433164e70995181560cf8dd5c schema:affiliation grid-institutes:grid.266900.b
    87 schema:familyName Panjei
    88 schema:givenName Egawati
    89 rdf:type schema:Person
    90 N846699d96712476c8a68e803ad2c8362 schema:name doi
    91 schema:value 10.1007/s00778-021-00721-1
    92 rdf:type schema:PropertyValue
    93 N9ef3390c9f3146beb60392a4540a64e6 rdf:first sg:person.014270622462.27
    94 rdf:rest rdf:nil
    95 Na68c8ae38c7846a5903560663450a225 schema:name dimensions_id
    96 schema:value pub.1144978072
    97 rdf:type schema:PropertyValue
    98 Nd82789f1e3374d0daab46d940875d382 rdf:first sg:person.015270057533.70
    99 rdf:rest Ne13a41b198f940f086d1f3e8d3bb0d18
    100 Ne13a41b198f940f086d1f3e8d3bb0d18 rdf:first N218dc9e26c774b2698db488813836ebc
    101 rdf:rest N9ef3390c9f3146beb60392a4540a64e6
    102 Ne6ab9053d3fa4401a5ac2e5f36821674 rdf:first sg:person.010425433674.36
    103 rdf:rest Nd82789f1e3374d0daab46d940875d382
    104 Nf8d49ceee9b44fd083df345bdf7f68e2 schema:name pubmed_id
    105 schema:value 35095253
    106 rdf:type schema:PropertyValue
    107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Information and Computing Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Data Format
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0805 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Distributed Computing
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Information Systems
    118 rdf:type schema:DefinedTerm
    119 sg:journal.1044889 schema:issn 0949-877X
    120 1066-8888
    121 schema:name The VLDB Journal
    122 schema:publisher Springer Nature
    123 rdf:type schema:Periodical
    124 sg:person.010425433674.36 schema:affiliation grid-institutes:grid.266900.b
    125 schema:familyName Gruenwald
    126 schema:givenName Le
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010425433674.36
    128 rdf:type schema:Person
    129 sg:person.014270622462.27 schema:affiliation grid-institutes:grid.266900.b
    130 schema:familyName Silvia
    131 schema:givenName Shejuti
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270622462.27
    133 rdf:type schema:Person
    134 sg:person.015270057533.70 schema:affiliation grid-institutes:grid.266744.5
    135 schema:familyName Leal
    136 schema:givenName Eleazar
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015270057533.70
    138 rdf:type schema:Person
    139 sg:pub.10.1007/3-540-49257-7_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048579740
    140 https://doi.org/10.1007/3-540-49257-7_25
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-3-030-10925-7_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111517573
    143 https://doi.org/10.1007/978-3-030-10925-7_8
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/978-3-030-10997-4_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111517591
    146 https://doi.org/10.1007/978-3-030-10997-4_23
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/978-3-030-19501-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114100102
    149 https://doi.org/10.1007/978-3-030-19501-4_5
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/978-3-030-46150-8_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127249624
    152 https://doi.org/10.1007/978-3-030-46150-8_12
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/978-3-319-20472-7_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049368860
    155 https://doi.org/10.1007/978-3-319-20472-7_8
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/978-3-319-47578-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033321832
    158 https://doi.org/10.1007/978-3-319-47578-3
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/978-3-319-59834-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091391637
    161 https://doi.org/10.1007/978-3-319-59834-5_1
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/978-3-319-59834-5_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091401362
    164 https://doi.org/10.1007/978-3-319-59834-5_4
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/978-3-642-01307-2_86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034820545
    167 https://doi.org/10.1007/978-3-642-01307-2_86
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/978-3-642-23881-9_50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052665150
    170 https://doi.org/10.1007/978-3-642-23881-9_50
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/978-3-642-40994-3_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005398381
    173 https://doi.org/10.1007/978-3-642-40994-3_20
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/978-94-015-3994-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053674345
    176 https://doi.org/10.1007/978-94-015-3994-4
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-981-10-3023-9_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090347378
    179 https://doi.org/10.1007/978-981-10-3023-9_42
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
    182 https://doi.org/10.1007/bf00994018
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s10462-012-9370-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038224467
    185 https://doi.org/10.1007/s10462-012-9370-y
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s10618-014-0365-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038929817
    188 https://doi.org/10.1007/s10618-014-0365-y
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10618-018-0585-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105945016
    191 https://doi.org/10.1007/s10618-018-0585-7
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1023/b:aire.0000045502.10941.a9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014095928
    194 https://doi.org/10.1023/b:aire.0000045502.10941.a9
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/d41586-020-01834-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128562342
    197 https://doi.org/10.1038/d41586-020-01834-3
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1186/s40537-015-0030-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049457707
    200 https://doi.org/10.1186/s40537-015-0030-3
    201 rdf:type schema:CreativeWork
    202 grid-institutes:grid.266744.5 schema:alternateName Department of Computer Science, University of Minnesota Duluth, Duluth, MN, USA
    203 schema:name Department of Computer Science, University of Minnesota Duluth, Duluth, MN, USA
    204 rdf:type schema:Organization
    205 grid-institutes:grid.266900.b schema:alternateName School of Computer Science, The University of Oklahoma, Norman, OK, USA
    206 schema:name School of Computer Science, The University of Oklahoma, Norman, OK, USA
    207 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...