Ontology type: schema:ScholarlyArticle Open Access: True
2022-01-26
AUTHORSEgawati Panjei, Le Gruenwald, Eleazar Leal, Christopher Nguyen, Shejuti Silvia
ABSTRACTWhile many techniques for outlier detection have been proposed in the literature, the interpretation of detected outliers is often left to users. As a result, it is difficult for users to promptly take appropriate actions concerning the detected outliers. To lessen this difficulty, when outliers are identified, they should be presented together with their explanations. There are survey papers on outlier detection, but none exists for outlier explanations. To fill this gap, in this paper, we present a survey on outlier explanations in which meaningful knowledge is mined from anomalous data to explain them. We define different types of outlier explanations and discuss the challenges in generating each type. We review the existing outlier explanation techniques and discuss how they address the challenges. We also discuss the applications of outlier explanations and review the existing methods used to evaluate outlier explanations. Furthermore, we discuss possible future research directions. More... »
PAGES1-32
http://scigraph.springernature.com/pub.10.1007/s00778-021-00721-1
DOIhttp://dx.doi.org/10.1007/s00778-021-00721-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1144978072
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/35095253
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Data Format",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0805",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Distributed Computing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Computer Science, The University of Oklahoma, Norman, OK, USA",
"id": "http://www.grid.ac/institutes/grid.266900.b",
"name": [
"School of Computer Science, The University of Oklahoma, Norman, OK, USA"
],
"type": "Organization"
},
"familyName": "Panjei",
"givenName": "Egawati",
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Computer Science, The University of Oklahoma, Norman, OK, USA",
"id": "http://www.grid.ac/institutes/grid.266900.b",
"name": [
"School of Computer Science, The University of Oklahoma, Norman, OK, USA"
],
"type": "Organization"
},
"familyName": "Gruenwald",
"givenName": "Le",
"id": "sg:person.010425433674.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010425433674.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, University of Minnesota Duluth, Duluth, MN, USA",
"id": "http://www.grid.ac/institutes/grid.266744.5",
"name": [
"Department of Computer Science, University of Minnesota Duluth, Duluth, MN, USA"
],
"type": "Organization"
},
"familyName": "Leal",
"givenName": "Eleazar",
"id": "sg:person.015270057533.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015270057533.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Computer Science, The University of Oklahoma, Norman, OK, USA",
"id": "http://www.grid.ac/institutes/grid.266900.b",
"name": [
"School of Computer Science, The University of Oklahoma, Norman, OK, USA"
],
"type": "Organization"
},
"familyName": "Nguyen",
"givenName": "Christopher",
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Computer Science, The University of Oklahoma, Norman, OK, USA",
"id": "http://www.grid.ac/institutes/grid.266900.b",
"name": [
"School of Computer Science, The University of Oklahoma, Norman, OK, USA"
],
"type": "Organization"
},
"familyName": "Silvia",
"givenName": "Shejuti",
"id": "sg:person.014270622462.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270622462.27"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/d41586-020-01834-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1128562342",
"https://doi.org/10.1038/d41586-020-01834-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-01307-2_86",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034820545",
"https://doi.org/10.1007/978-3-642-01307-2_86"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-49257-7_25",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048579740",
"https://doi.org/10.1007/3-540-49257-7_25"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-030-10925-7_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1111517573",
"https://doi.org/10.1007/978-3-030-10925-7_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10618-014-0365-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038929817",
"https://doi.org/10.1007/s10618-014-0365-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-23881-9_50",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052665150",
"https://doi.org/10.1007/978-3-642-23881-9_50"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10462-012-9370-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038224467",
"https://doi.org/10.1007/s10462-012-9370-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-20472-7_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049368860",
"https://doi.org/10.1007/978-3-319-20472-7_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/b:aire.0000045502.10941.a9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014095928",
"https://doi.org/10.1023/b:aire.0000045502.10941.a9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-59834-5_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091391637",
"https://doi.org/10.1007/978-3-319-59834-5_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-030-46150-8_12",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1127249624",
"https://doi.org/10.1007/978-3-030-46150-8_12"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-030-19501-4_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1114100102",
"https://doi.org/10.1007/978-3-030-19501-4_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-40994-3_20",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005398381",
"https://doi.org/10.1007/978-3-642-40994-3_20"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00994018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025150743",
"https://doi.org/10.1007/bf00994018"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10618-018-0585-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105945016",
"https://doi.org/10.1007/s10618-018-0585-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s40537-015-0030-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049457707",
"https://doi.org/10.1186/s40537-015-0030-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-47578-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033321832",
"https://doi.org/10.1007/978-3-319-47578-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-015-3994-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053674345",
"https://doi.org/10.1007/978-94-015-3994-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-981-10-3023-9_42",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090347378",
"https://doi.org/10.1007/978-981-10-3023-9_42"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-59834-5_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091401362",
"https://doi.org/10.1007/978-3-319-59834-5_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-030-10997-4_23",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1111517591",
"https://doi.org/10.1007/978-3-030-10997-4_23"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-01-26",
"datePublishedReg": "2022-01-26",
"description": "While many techniques for outlier detection have been proposed in the literature, the interpretation of detected outliers is often left to users. As a result, it is difficult for users to promptly take appropriate actions concerning the detected outliers. To lessen this difficulty, when outliers are identified, they should be presented together with their explanations. There are survey papers on outlier detection, but none exists for outlier explanations. To fill this gap, in this paper, we present a survey on outlier explanations in which meaningful knowledge is mined from anomalous data to explain them. We define different types of outlier explanations and discuss the challenges in generating each type. We review the existing outlier explanation techniques and discuss how they address the challenges. We also discuss the applications of outlier explanations and review the existing methods used to evaluate outlier explanations. Furthermore, we discuss possible future research directions.",
"genre": "article",
"id": "sg:pub.10.1007/s00778-021-00721-1",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1044889",
"issn": [
"1066-8888",
"0949-877X"
],
"name": "The VLDB Journal",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"survey",
"detection",
"literature",
"appropriate action",
"action",
"different types",
"types",
"challenges",
"technique",
"results",
"difficulties",
"explanation",
"knowledge",
"data",
"future research directions",
"interpretation",
"users",
"gap",
"explanation techniques",
"method",
"research directions",
"outliers",
"applications",
"possible future research directions",
"direction",
"paper",
"meaningful knowledge",
"anomalous data",
"outlier detection",
"survey paper"
],
"name": "A survey on outlier explanations",
"pagination": "1-32",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1144978072"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00778-021-00721-1"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"35095253"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00778-021-00721-1",
"https://app.dimensions.ai/details/publication/pub.1144978072"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_942.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00778-021-00721-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00778-021-00721-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00778-021-00721-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00778-021-00721-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00778-021-00721-1'
This table displays all metadata directly associated to this object as RDF triples.
207 TRIPLES
22 PREDICATES
77 URIs
46 LITERALS
5 BLANK NODES