Quantitative analysis of three-dimensional complexity and connectivity changes in trabecular microarchitecture in relation to aging, menopause, and inflammation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-11

AUTHORS

Taro Mawatari, Hiromasa Miura, Hidehiko Higaki, Kosaku Kurata, Takaaki Moro-oka, Teruo Murakami, Yukihide Iwamoto

ABSTRACT

There are several types of bone loss besides that associated with normal aging, eg, that associated with the menopause, and that associated with chronic inflammation, and these are considered to be caused by different mechanisms. The microarchitecture that results from these different bone-loss mechanisms would not be the same. The purpose of this study was to investigate differences in the three-dimensional trabecular microarchitecture in various types of osteopenia, using microcomputed tomography (Micro-CT). Thirty-five Fisher 344 rats were divided into five groups (control, young, senile, ovariectomized [OVX], and inflammation-mediated osteopenia [IMO]) and distal femoral metaphysis was scanned by Micro-CT to nondestructively acquire a 3-D CT stack consisting of 50 consecutive slices at a spatial resolution of 26 microm. The volume of interest, consisting of the secondary spongiosa, was prepared to analyze the 3-D trabecular microarchitecture. A parametric analysis was carried out using bone volume fractions, fractal dimensions, and the first Betti number in order to quantitatively express the mass, complexity, and connectivity of the trabecular microarchitecture. Complexity tended to decrease with age, and decreased significantly in estrogen deficiency-induced and inflammation-mediated osteopenia. Connectivity did not appear to change with aging, but was significantly decreased in estrogen deficiency-induced and inflammation-mediated osteopenia. There was no significant difference between the OVX and the IMO groups. More... »

PAGES

431-438

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s007760050126

DOI

http://dx.doi.org/10.1007/s007760050126

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022844508

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10664426


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone Diseases, Metabolic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone Resorption", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Models, Animal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Femur", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fractals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Inflammation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Osteoporosis, Postmenopausal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ovariectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Random Allocation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats, Inbred F344", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mawatari", 
        "givenName": "Taro", 
        "id": "sg:person.0660307425.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660307425.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miura", 
        "givenName": "Hiromasa", 
        "id": "sg:person.01266551663.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266551663.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu Sangyo University", 
          "id": "https://www.grid.ac/institutes/grid.411241.3", 
          "name": [
            "Department of Mechanical Engineering, Faculty of Engineering, Kyushu Sangyo University, Fukuoka 812-8503, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higaki", 
        "givenName": "Hidehiko", 
        "id": "sg:person.01012707165.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012707165.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Intelligent Machinery and Systems, Faculty of Engineering, Kyushu University, Fukuoka 812-8581, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurata", 
        "givenName": "Kosaku", 
        "id": "sg:person.016457274171.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016457274171.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moro-oka", 
        "givenName": "Takaaki", 
        "id": "sg:person.01075707037.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075707037.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Intelligent Machinery and Systems, Faculty of Engineering, Kyushu University, Fukuoka 812-8581, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murakami", 
        "givenName": "Teruo", 
        "id": "sg:person.015634502675.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634502675.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwamoto", 
        "givenName": "Yukihide", 
        "id": "sg:person.01110066276.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110066276.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s8756-3282(98)00030-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001471608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9343(87)90274-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005104706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-6009(89)90038-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005863401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/8756-3282(93)90144-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006296787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jor.1100080608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008083255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/8756-3282(94)90267-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010981816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.597390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012303645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(95)00113-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014810581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.596948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015205930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.5650040103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016975902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.5650040103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016975902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.5650091210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017988566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.5650091210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017988566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci111096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018490211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4220(92)90222-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018948517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/8756-3282(94)90297-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020813235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.5650111118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022008147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.5650111118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022008147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0968-4328(94)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022119329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0968-4328(94)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022119329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s8756-3282(97)00007-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036834963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02556383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039579457", 
          "https://doi.org/10.1007/bf02556383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02556383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039579457", 
          "https://doi.org/10.1007/bf02556383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/8756-3282(95)00489-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039824850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-9896(199601)178:1<100::aid-path429>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040102048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.5650100213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040376785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.5650100213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040376785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.5650091117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046261105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.5650091117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046261105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/8756-3282(93)90245-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051001471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2796.1993.tb00738.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051716343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2796.1993.tb00738.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051716343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.5650101007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053170826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.5650101007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053170826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2995555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057891480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/endo-115-1-50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064258151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.epirev.a036281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080023808"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-11", 
    "datePublishedReg": "1999-11-01", 
    "description": "There are several types of bone loss besides that associated with normal aging, eg, that associated with the menopause, and that associated with chronic inflammation, and these are considered to be caused by different mechanisms. The microarchitecture that results from these different bone-loss mechanisms would not be the same. The purpose of this study was to investigate differences in the three-dimensional trabecular microarchitecture in various types of osteopenia, using microcomputed tomography (Micro-CT). Thirty-five Fisher 344 rats were divided into five groups (control, young, senile, ovariectomized [OVX], and inflammation-mediated osteopenia [IMO]) and distal femoral metaphysis was scanned by Micro-CT to nondestructively acquire a 3-D CT stack consisting of 50 consecutive slices at a spatial resolution of 26 microm. The volume of interest, consisting of the secondary spongiosa, was prepared to analyze the 3-D trabecular microarchitecture. A parametric analysis was carried out using bone volume fractions, fractal dimensions, and the first Betti number in order to quantitatively express the mass, complexity, and connectivity of the trabecular microarchitecture. Complexity tended to decrease with age, and decreased significantly in estrogen deficiency-induced and inflammation-mediated osteopenia. Connectivity did not appear to change with aging, but was significantly decreased in estrogen deficiency-induced and inflammation-mediated osteopenia. There was no significant difference between the OVX and the IMO groups.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s007760050126", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1115232", 
        "issn": [
          "0949-2658", 
          "1436-2023"
        ], 
        "name": "Journal of Orthopaedic Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Quantitative analysis of three-dimensional complexity and connectivity changes in trabecular microarchitecture in relation to aging, menopause, and inflammation", 
    "pagination": "431-438", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6cd5f057891dd336aa1bb8def886c0889f0e19ff57f01db2c8258200acb9948a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10664426"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9604934"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s007760050126"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022844508"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s007760050126", 
      "https://app.dimensions.ai/details/publication/pub.1022844508"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs007760050126"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s007760050126'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s007760050126'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s007760050126'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s007760050126'


 

This table displays all metadata directly associated to this object as RDF triples.

280 TRIPLES      21 PREDICATES      77 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s007760050126 schema:about N103a3cad1f7846f49196076ae3f8a400
2 N13e7d1229118490cb7ecf0c2c729c84d
3 N2236468876244eb484d889ab20dcd7b7
4 N233e1833df024aafa6764788a85a1bf1
5 N39fe59e49bd14e9893811cc5e98a87e9
6 N3eda22da6b1049a99832e7221341a40c
7 N58d4db2b5c6841298095e79eace1e6ff
8 N5d46b2bd361140bd8e9985dc1a347217
9 N5f20637f8f5a4e19b4a4440b76b05e8f
10 N64dabadf1722408dbb006748179e1cae
11 N7251314a108d49159890957fdb77468f
12 N8eb899e6005b4ae6b3e135230e480aee
13 N94c8afd82b4f4e019abeb6169cbe058a
14 N9c208a1ad9f7491690fd80c20ed231f1
15 Na5b47d9206a1437e8cb422c881567231
16 Nb52b2ae2b1b2426fb5dd993a2695f028
17 Nc65b1a55dcb74da289f2423ec1dcd5e5
18 Ncba1f095cc344115b387e64121f00332
19 Nd02c7d32b9d94d949f24ac8e285f103b
20 Ndf9dcea171a44626afc78718b5d3cb70
21 anzsrc-for:11
22 anzsrc-for:1103
23 schema:author N67fde637591f414bb8f582d651d6f7b6
24 schema:citation sg:pub.10.1007/bf02556383
25 https://doi.org/10.1002/(sici)1096-9896(199601)178:1<100::aid-path429>3.0.co;2-k
26 https://doi.org/10.1002/jbmr.5650040103
27 https://doi.org/10.1002/jbmr.5650091117
28 https://doi.org/10.1002/jbmr.5650091210
29 https://doi.org/10.1002/jbmr.5650100213
30 https://doi.org/10.1002/jbmr.5650101007
31 https://doi.org/10.1002/jbmr.5650111118
32 https://doi.org/10.1002/jor.1100080608
33 https://doi.org/10.1016/0002-9343(87)90274-9
34 https://doi.org/10.1016/0021-9290(95)00113-1
35 https://doi.org/10.1016/0030-4220(92)90222-c
36 https://doi.org/10.1016/0169-6009(89)90038-x
37 https://doi.org/10.1016/0968-4328(94)90057-4
38 https://doi.org/10.1016/8756-3282(93)90144-y
39 https://doi.org/10.1016/8756-3282(93)90245-6
40 https://doi.org/10.1016/8756-3282(94)90267-4
41 https://doi.org/10.1016/8756-3282(94)90297-6
42 https://doi.org/10.1016/8756-3282(95)00489-0
43 https://doi.org/10.1016/s8756-3282(97)00007-0
44 https://doi.org/10.1016/s8756-3282(98)00030-1
45 https://doi.org/10.1063/1.2995555
46 https://doi.org/10.1093/oxfordjournals.epirev.a036281
47 https://doi.org/10.1111/j.1365-2796.1993.tb00738.x
48 https://doi.org/10.1118/1.596948
49 https://doi.org/10.1118/1.597390
50 https://doi.org/10.1172/jci111096
51 https://doi.org/10.1210/endo-115-1-50
52 schema:datePublished 1999-11
53 schema:datePublishedReg 1999-11-01
54 schema:description There are several types of bone loss besides that associated with normal aging, eg, that associated with the menopause, and that associated with chronic inflammation, and these are considered to be caused by different mechanisms. The microarchitecture that results from these different bone-loss mechanisms would not be the same. The purpose of this study was to investigate differences in the three-dimensional trabecular microarchitecture in various types of osteopenia, using microcomputed tomography (Micro-CT). Thirty-five Fisher 344 rats were divided into five groups (control, young, senile, ovariectomized [OVX], and inflammation-mediated osteopenia [IMO]) and distal femoral metaphysis was scanned by Micro-CT to nondestructively acquire a 3-D CT stack consisting of 50 consecutive slices at a spatial resolution of 26 microm. The volume of interest, consisting of the secondary spongiosa, was prepared to analyze the 3-D trabecular microarchitecture. A parametric analysis was carried out using bone volume fractions, fractal dimensions, and the first Betti number in order to quantitatively express the mass, complexity, and connectivity of the trabecular microarchitecture. Complexity tended to decrease with age, and decreased significantly in estrogen deficiency-induced and inflammation-mediated osteopenia. Connectivity did not appear to change with aging, but was significantly decreased in estrogen deficiency-induced and inflammation-mediated osteopenia. There was no significant difference between the OVX and the IMO groups.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N618b2b40bbf9492a98568d9d10e90ea6
59 N81db316c9cee4107856d6ab3a4c41df3
60 sg:journal.1115232
61 schema:name Quantitative analysis of three-dimensional complexity and connectivity changes in trabecular microarchitecture in relation to aging, menopause, and inflammation
62 schema:pagination 431-438
63 schema:productId N0133d63a05924a8bb718e00db53ca717
64 N65e5c66c1eeb47ac951652263c7e7ef6
65 Nc642cd3565b8456eb798f277fde05d94
66 Nde093215926d49d3a78b7af7969b9d5f
67 Ne90fe49f203e4addabae8ae5cb4d1726
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022844508
69 https://doi.org/10.1007/s007760050126
70 schema:sdDatePublished 2019-04-10T17:31
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N233107d2ae2c4758b21bfaa015b5d5bb
73 schema:url http://link.springer.com/10.1007%2Fs007760050126
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0133d63a05924a8bb718e00db53ca717 schema:name nlm_unique_id
78 schema:value 9604934
79 rdf:type schema:PropertyValue
80 N103a3cad1f7846f49196076ae3f8a400 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Image Processing, Computer-Assisted
82 rdf:type schema:DefinedTerm
83 N13e7d1229118490cb7ecf0c2c729c84d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Tomography, X-Ray Computed
85 rdf:type schema:DefinedTerm
86 N2236468876244eb484d889ab20dcd7b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Femur
88 rdf:type schema:DefinedTerm
89 N233107d2ae2c4758b21bfaa015b5d5bb schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N233e1833df024aafa6764788a85a1bf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Humans
93 rdf:type schema:DefinedTerm
94 N39fe59e49bd14e9893811cc5e98a87e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Ovariectomy
96 rdf:type schema:DefinedTerm
97 N3eda22da6b1049a99832e7221341a40c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Animals
99 rdf:type schema:DefinedTerm
100 N58d4db2b5c6841298095e79eace1e6ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Osteoporosis, Postmenopausal
102 rdf:type schema:DefinedTerm
103 N5d46b2bd361140bd8e9985dc1a347217 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Analysis of Variance
105 rdf:type schema:DefinedTerm
106 N5f20637f8f5a4e19b4a4440b76b05e8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Rats, Inbred F344
108 rdf:type schema:DefinedTerm
109 N618b2b40bbf9492a98568d9d10e90ea6 schema:issueNumber 6
110 rdf:type schema:PublicationIssue
111 N64dabadf1722408dbb006748179e1cae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Bone Diseases, Metabolic
113 rdf:type schema:DefinedTerm
114 N65e5c66c1eeb47ac951652263c7e7ef6 schema:name dimensions_id
115 schema:value pub.1022844508
116 rdf:type schema:PropertyValue
117 N67fde637591f414bb8f582d651d6f7b6 rdf:first sg:person.0660307425.41
118 rdf:rest Nf74e23e005f546efa102cc4488b4e326
119 N7251314a108d49159890957fdb77468f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Bone Resorption
121 rdf:type schema:DefinedTerm
122 N81db316c9cee4107856d6ab3a4c41df3 schema:volumeNumber 4
123 rdf:type schema:PublicationVolume
124 N8eb899e6005b4ae6b3e135230e480aee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Disease Models, Animal
126 rdf:type schema:DefinedTerm
127 N94c8afd82b4f4e019abeb6169cbe058a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Female
129 rdf:type schema:DefinedTerm
130 N9c208a1ad9f7491690fd80c20ed231f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Rats
132 rdf:type schema:DefinedTerm
133 Na5b47d9206a1437e8cb422c881567231 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Random Allocation
135 rdf:type schema:DefinedTerm
136 Nb0fdc7ebd5c740bab2feff900c699f41 rdf:first sg:person.01110066276.25
137 rdf:rest rdf:nil
138 Nb52b2ae2b1b2426fb5dd993a2695f028 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Reproducibility of Results
140 rdf:type schema:DefinedTerm
141 Nc642cd3565b8456eb798f277fde05d94 schema:name pubmed_id
142 schema:value 10664426
143 rdf:type schema:PropertyValue
144 Nc65b1a55dcb74da289f2423ec1dcd5e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Inflammation
146 rdf:type schema:DefinedTerm
147 Ncba1f095cc344115b387e64121f00332 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Software
149 rdf:type schema:DefinedTerm
150 Nd02c7d32b9d94d949f24ac8e285f103b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Age Factors
152 rdf:type schema:DefinedTerm
153 Nde093215926d49d3a78b7af7969b9d5f schema:name readcube_id
154 schema:value 6cd5f057891dd336aa1bb8def886c0889f0e19ff57f01db2c8258200acb9948a
155 rdf:type schema:PropertyValue
156 Ndf9dcea171a44626afc78718b5d3cb70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Fractals
158 rdf:type schema:DefinedTerm
159 Ndfe99a4520ec445ea6eac315a30ffff3 rdf:first sg:person.016457274171.42
160 rdf:rest Nf1b1d19a1cfd40458bed5951fe96e32f
161 Ne878dcbb92d045aea5140ddef3baa2fd rdf:first sg:person.015634502675.89
162 rdf:rest Nb0fdc7ebd5c740bab2feff900c699f41
163 Ne90fe49f203e4addabae8ae5cb4d1726 schema:name doi
164 schema:value 10.1007/s007760050126
165 rdf:type schema:PropertyValue
166 Nf1b1d19a1cfd40458bed5951fe96e32f rdf:first sg:person.01075707037.25
167 rdf:rest Ne878dcbb92d045aea5140ddef3baa2fd
168 Nf416c13f787745fba4eebce3047f4c33 rdf:first sg:person.01012707165.44
169 rdf:rest Ndfe99a4520ec445ea6eac315a30ffff3
170 Nf74e23e005f546efa102cc4488b4e326 rdf:first sg:person.01266551663.10
171 rdf:rest Nf416c13f787745fba4eebce3047f4c33
172 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
173 schema:name Medical and Health Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
176 schema:name Clinical Sciences
177 rdf:type schema:DefinedTerm
178 sg:journal.1115232 schema:issn 0949-2658
179 1436-2023
180 schema:name Journal of Orthopaedic Science
181 rdf:type schema:Periodical
182 sg:person.01012707165.44 schema:affiliation https://www.grid.ac/institutes/grid.411241.3
183 schema:familyName Higaki
184 schema:givenName Hidehiko
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012707165.44
186 rdf:type schema:Person
187 sg:person.01075707037.25 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
188 schema:familyName Moro-oka
189 schema:givenName Takaaki
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075707037.25
191 rdf:type schema:Person
192 sg:person.01110066276.25 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
193 schema:familyName Iwamoto
194 schema:givenName Yukihide
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110066276.25
196 rdf:type schema:Person
197 sg:person.01266551663.10 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
198 schema:familyName Miura
199 schema:givenName Hiromasa
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266551663.10
201 rdf:type schema:Person
202 sg:person.015634502675.89 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
203 schema:familyName Murakami
204 schema:givenName Teruo
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015634502675.89
206 rdf:type schema:Person
207 sg:person.016457274171.42 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
208 schema:familyName Kurata
209 schema:givenName Kosaku
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016457274171.42
211 rdf:type schema:Person
212 sg:person.0660307425.41 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
213 schema:familyName Mawatari
214 schema:givenName Taro
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660307425.41
216 rdf:type schema:Person
217 sg:pub.10.1007/bf02556383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039579457
218 https://doi.org/10.1007/bf02556383
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1002/(sici)1096-9896(199601)178:1<100::aid-path429>3.0.co;2-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1040102048
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1002/jbmr.5650040103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016975902
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1002/jbmr.5650091117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046261105
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1002/jbmr.5650091210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017988566
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/jbmr.5650100213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040376785
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1002/jbmr.5650101007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053170826
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1002/jbmr.5650111118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022008147
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1002/jor.1100080608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008083255
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/0002-9343(87)90274-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005104706
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/0021-9290(95)00113-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014810581
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/0030-4220(92)90222-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1018948517
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/0169-6009(89)90038-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005863401
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/0968-4328(94)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022119329
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/8756-3282(93)90144-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006296787
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/8756-3282(93)90245-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051001471
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/8756-3282(94)90267-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010981816
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/8756-3282(94)90297-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020813235
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/8756-3282(95)00489-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039824850
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/s8756-3282(97)00007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036834963
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/s8756-3282(98)00030-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001471608
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1063/1.2995555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057891480
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/oxfordjournals.epirev.a036281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080023808
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1111/j.1365-2796.1993.tb00738.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051716343
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1118/1.596948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015205930
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1118/1.597390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012303645
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1172/jci111096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018490211
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1210/endo-115-1-50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064258151
273 rdf:type schema:CreativeWork
274 https://www.grid.ac/institutes/grid.177174.3 schema:alternateName Kyushu University
275 schema:name Department of Intelligent Machinery and Systems, Faculty of Engineering, Kyushu University, Fukuoka 812-8581, Japan, JP
276 Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan, JP
277 rdf:type schema:Organization
278 https://www.grid.ac/institutes/grid.411241.3 schema:alternateName Kyushu Sangyo University
279 schema:name Department of Mechanical Engineering, Faculty of Engineering, Kyushu Sangyo University, Fukuoka 812-8503, Japan, JP
280 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...