Bone texture analysis is correlated with three-dimensional microarchitecture and mechanical properties of trabecular bone in osteoporotic femurs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-01

AUTHORS

Thomas Le Corroller, Martine Pithioux, Fahmi Chaari, Benoît Rosa, Sébastien Parratte, Boris Maurel, Jean-Noël Argenson, Pierre Champsaur, Patrick Chabrand

ABSTRACT

Fracture of the proximal femur is a major public health problem in elderly persons. It has recently been suggested that combining texture analysis and bone mineral density measurement improves the failure load prediction in human femurs. In this study, we aimed to compare bone texture analysis with three-dimensional (3D) microarchitecture and mechanical properties of trabecular bone in osteoporotic femurs. Eight femoral heads from osteoporotic patients who fractured their femoral neck provided 31 bone cores. Bone samples were studied using a new high-resolution digital X-ray device (BMA™, D3A Medical Systems) allowing for texture analysis with fractal parameter H (mean), and were examined using micro-computed tomography (microCT) for 3D microarchitecture. Finally, uniaxial compression tests to failure were performed to estimate failure load and apparent modulus of bone samples. The fractal parameter H (mean) was strongly correlated with bone volume fraction (BV/TV) (r = 0.84) and trabecular thickness (Tb.Th) (r = 0.91) (p < 0.01). H (mean) was also markedly correlated with failure load (r = 0.84) and apparent modulus (r = 0.71) of core samples (p < 0.01). Bone volume fraction (BV/TV) and trabecular thickness (Tb.Th) demonstrated significant correlations with failure load (r = 0.85 and 0.72, respectively) and apparent modulus (r = 0.72 and 0.64, respectively) (p < 0.01). Overall, the best predictors of failure load were H (mean), bone volume fraction, and trabecular thickness, with r (2) coefficients of 0.83, 0.76, and 0.80 respectively. This study shows that the fractal parameter H (mean) is correlated with 3D microCT parameters and mechanical properties of femoral head bone samples, which suggests that radiographic texture analysis is a suitable approach for trabecular bone microarchitecture assessment in osteoporotic femurs. More... »

PAGES

82-88

References to SciGraph publications

  • 2007-05. The vertebral fracture cascade in osteoporosis: a review of aetiopathogenesis in OSTEOPOROSIS INTERNATIONAL
  • 2006-06. New imaging technologies in the diagnosis of osteoporosis in REVIEWS IN ENDOCRINE AND METABOLIC DISORDERS
  • 1998-11. Fractal Analysis of Trabecular Bone Texture on Radiographs: Discriminant Value in Postmenopausal Osteoporosis in OSTEOPOROSIS INTERNATIONAL
  • 2007-02. Bone Texture Analysis on Direct Digital Radiographic Images: Precision Study and Relationship with Bone Mineral Density at the Os Calcis in CALCIFIED TISSUE INTERNATIONAL
  • 2012-01. Combination of texture analysis and bone mineral density improves the prediction of fracture load in human femurs in OSTEOPOROSIS INTERNATIONAL
  • 1995-07. Stress distributions within the proximal femur during gait and falls: Implications for osteoporotic fracture in OSTEOPOROSIS INTERNATIONAL
  • 2009-11. Radiographic trabecular 2D and 3D parameters of proximal femoral bone cores correlate with each other and with yield stress in OSTEOPOROSIS INTERNATIONAL
  • 2008-07. Clinical interest of bone texture analysis in osteoporosis: a case control multicenter study in OSTEOPOROSIS INTERNATIONAL
  • 2006-06. Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone in OSTEOPOROSIS INTERNATIONAL
  • 1998-08. Fractal Analysis of Bone Texture on Os Calcis Radiographs Compared with Trabecular Microarchitecture Analyzed by Histomorphometry in CALCIFIED TISSUE INTERNATIONAL
  • 1992-11. Hip fractures in the elderly: A world-wide projection in OSTEOPOROSIS INTERNATIONAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00774-012-0375-z

    DOI

    http://dx.doi.org/10.1007/s00774-012-0375-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027090387

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22886379


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bone Density", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Femur Head", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hip Fractures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Osteoporosis, Postmenopausal", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut des Sciences du Mouvement Etienne-Jules Marey", 
              "id": "https://www.grid.ac/institutes/grid.493284.0", 
              "name": [
                "Radiology Department, H\u00f4pital Sainte-Marguerite, 270 Boulevard de Sainte-Marguerite, 13009, Marseille, France", 
                "Institut des sciences du mouvement, UMR 7287 CNRS et Aix-Marseille Universit\u00e9, CP 910, Avenue de Luminy, 13288, Marseille Cedex 09, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Le Corroller", 
            "givenName": "Thomas", 
            "id": "sg:person.0603057355.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603057355.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut des Sciences du Mouvement Etienne-Jules Marey", 
              "id": "https://www.grid.ac/institutes/grid.493284.0", 
              "name": [
                "Institut des sciences du mouvement, UMR 7287 CNRS et Aix-Marseille Universit\u00e9, CP 910, Avenue de Luminy, 13288, Marseille Cedex 09, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pithioux", 
            "givenName": "Martine", 
            "id": "sg:person.0635074323.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635074323.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Industrial and Human Automation Control, Mechanical Engineering and Computer Science", 
              "id": "https://www.grid.ac/institutes/grid.473800.8", 
              "name": [
                "LAMIH, UMR 8201 CNRS et Universit\u00e9 de Valenciennes, Campus du Mont-Houy, 59300, Valenciennes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chaari", 
            "givenName": "Fahmi", 
            "id": "sg:person.014676176713.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676176713.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Industrial and Human Automation Control, Mechanical Engineering and Computer Science", 
              "id": "https://www.grid.ac/institutes/grid.473800.8", 
              "name": [
                "LAMIH, UMR 8201 CNRS et Universit\u00e9 de Valenciennes, Campus du Mont-Houy, 59300, Valenciennes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rosa", 
            "givenName": "Beno\u00eet", 
            "id": "sg:person.01075414101.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075414101.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "H\u00f4pital Sainte-Marguerite", 
              "id": "https://www.grid.ac/institutes/grid.414438.e", 
              "name": [
                "Orthopedic Surgery, H\u00f4pital Sainte-Marguerite, 270 Boulevard de Sainte-Marguerite, 13009, Marseille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Parratte", 
            "givenName": "S\u00e9bastien", 
            "id": "sg:person.0730443221.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730443221.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "H\u00f4pital Sainte-Marguerite", 
              "id": "https://www.grid.ac/institutes/grid.414438.e", 
              "name": [
                "Radiology Department, H\u00f4pital Sainte-Marguerite, 270 Boulevard de Sainte-Marguerite, 13009, Marseille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maurel", 
            "givenName": "Boris", 
            "id": "sg:person.01301157043.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301157043.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "H\u00f4pital Sainte-Marguerite", 
              "id": "https://www.grid.ac/institutes/grid.414438.e", 
              "name": [
                "Orthopedic Surgery, H\u00f4pital Sainte-Marguerite, 270 Boulevard de Sainte-Marguerite, 13009, Marseille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Argenson", 
            "givenName": "Jean-No\u00ebl", 
            "id": "sg:person.01261070567.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261070567.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut des Sciences du Mouvement Etienne-Jules Marey", 
              "id": "https://www.grid.ac/institutes/grid.493284.0", 
              "name": [
                "Radiology Department, H\u00f4pital Sainte-Marguerite, 270 Boulevard de Sainte-Marguerite, 13009, Marseille, France", 
                "Institut des sciences du mouvement, UMR 7287 CNRS et Aix-Marseille Universit\u00e9, CP 910, Avenue de Luminy, 13288, Marseille Cedex 09, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Champsaur", 
            "givenName": "Pierre", 
            "id": "sg:person.01163650115.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163650115.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut des Sciences du Mouvement Etienne-Jules Marey", 
              "id": "https://www.grid.ac/institutes/grid.493284.0", 
              "name": [
                "Institut des sciences du mouvement, UMR 7287 CNRS et Aix-Marseille Universit\u00e9, CP 910, Avenue de Luminy, 13288, Marseille Cedex 09, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chabrand", 
            "givenName": "Patrick", 
            "id": "sg:person.01042477444.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042477444.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1056/nejmra053077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000793776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm199503233321202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002087109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001980050108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006146102", 
              "https://doi.org/10.1007/s001980050108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00223-006-0216-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007292643", 
              "https://doi.org/10.1007/s00223-006-0216-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00223-006-0216-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007292643", 
              "https://doi.org/10.1007/s00223-006-0216-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.3215535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008326969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01623184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008522902", 
              "https://doi.org/10.1007/bf01623184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01623184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008522902", 
              "https://doi.org/10.1007/bf01623184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejrad.2008.04.064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009423519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.090714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011871747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.090714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011871747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01774015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012558994", 
              "https://doi.org/10.1007/bf01774015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01774015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012558994", 
              "https://doi.org/10.1007/bf01774015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1076-6332(05)80286-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012746355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0002-9343(85)90343-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015178444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.061206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015339844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11154-006-9004-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017468143", 
              "https://doi.org/10.1007/s11154-006-9004-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9290(98)00074-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017760923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.070301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021072279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002239900501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021780804", 
              "https://doi.org/10.1007/s002239900501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2472070982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022185580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.2001.16.4.697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024115328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-009-0908-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025441170", 
              "https://doi.org/10.1007/s00198-009-0908-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-009-0908-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025441170", 
              "https://doi.org/10.1007/s00198-009-0908-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-009-0908-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025441170", 
              "https://doi.org/10.1007/s00198-009-0908-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0140-6736(93)92555-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027878716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0140-6736(93)92555-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027878716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejrad.2009.04.074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029228103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-006-0304-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032049459", 
              "https://doi.org/10.1007/s00198-006-0304-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-006-0304-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032049459", 
              "https://doi.org/10.1007/s00198-006-0304-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.3528125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033237818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bone.2003.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033847047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.10090232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036900707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.2000.15.4.691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038435580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-011-1703-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043832540", 
              "https://doi.org/10.1007/s00198-011-1703-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-006-0074-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046963439", 
              "https://doi.org/10.1007/s00198-006-0074-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-006-0074-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046963439", 
              "https://doi.org/10.1007/s00198-006-0074-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9290(99)00099-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050183359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.2000.15.1.32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051030300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-007-0532-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053390154", 
              "https://doi.org/10.1007/s00198-007-0532-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-007-0532-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053390154", 
              "https://doi.org/10.1007/s00198-007-0532-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.312.7041.1254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062775836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.312.7041.1254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062775836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/jc.2004-1568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064288031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/00004623-197052030-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068884850"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-01", 
        "datePublishedReg": "2013-01-01", 
        "description": "Fracture of the proximal femur is a major public health problem in elderly persons. It has recently been suggested that combining texture analysis and bone mineral density measurement improves the failure load prediction in human femurs. In this study, we aimed to compare bone texture analysis with three-dimensional (3D) microarchitecture and mechanical properties of trabecular bone in osteoporotic femurs. Eight femoral heads from osteoporotic patients who fractured their femoral neck provided 31 bone cores. Bone samples were studied using a new high-resolution digital X-ray device (BMA\u2122, D3A Medical Systems) allowing for texture analysis with fractal parameter H                 (mean), and were examined using micro-computed tomography (microCT) for 3D microarchitecture. Finally, uniaxial compression tests to failure were performed to estimate failure load and apparent modulus of bone samples. The fractal parameter H                 (mean) was strongly correlated with bone volume fraction (BV/TV) (r\u00a0=\u00a00.84) and trabecular thickness (Tb.Th) (r\u00a0=\u00a00.91) (p\u00a0<\u00a00.01). H                 (mean) was also markedly correlated with failure load (r\u00a0=\u00a00.84) and apparent modulus (r\u00a0=\u00a00.71) of core samples (p\u00a0<\u00a00.01). Bone volume fraction (BV/TV) and trabecular thickness (Tb.Th) demonstrated significant correlations with failure load (r\u00a0=\u00a00.85 and\u00a00.72, respectively) and apparent modulus (r\u00a0=\u00a00.72 and 0.64, respectively) (p\u00a0<\u00a00.01). Overall, the best predictors of failure load were H                 (mean), bone volume fraction, and trabecular thickness, with r                 (2) coefficients of 0.83, 0.76, and 0.80 respectively. This study shows that the fractal parameter H                 (mean) is correlated with 3D microCT parameters and mechanical properties of femoral head bone samples, which suggests that radiographic texture analysis is a suitable approach for trabecular bone microarchitecture assessment in osteoporotic femurs.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00774-012-0375-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1312216", 
            "issn": [
              "0914-8779", 
              "1435-5604"
            ], 
            "name": "Journal of Bone and Mineral Metabolism", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "Bone texture analysis is correlated with three-dimensional microarchitecture and mechanical properties of trabecular bone in osteoporotic femurs", 
        "pagination": "82-88", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "810cc8a482c472c2cff2db351bb5502674f83f50c8b14dde03ae98c50a8dc9f4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22886379"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9436705"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00774-012-0375-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027090387"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00774-012-0375-z", 
          "https://app.dimensions.ai/details/publication/pub.1027090387"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00774-012-0375-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00774-012-0375-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00774-012-0375-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00774-012-0375-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00774-012-0375-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    282 TRIPLES      21 PREDICATES      72 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00774-012-0375-z schema:about N02345ebe612f42b1a8cbf5c89f9a6599
    2 N05bf1c043bc04d82a3a63f2dc4f65044
    3 N0e482e9d8aac4277b4be642d32c68afa
    4 N84ea2919d7204020828344120d357229
    5 N877d1a84ad7440fb919cf57480cf38fc
    6 N884848c2f72944c68283ed04ab9de05d
    7 Nbc6c34e8cac449cba02295151e22ea05
    8 Nbe6429ed6e8747a19bc2a0edd5102c85
    9 Nddab4e600b194827a2c17b37e4cf7bb8
    10 anzsrc-for:11
    11 anzsrc-for:1103
    12 schema:author N49fd8dc0b7b74ffe9d72a38056d3b9f0
    13 schema:citation sg:pub.10.1007/bf01623184
    14 sg:pub.10.1007/bf01774015
    15 sg:pub.10.1007/s00198-006-0074-5
    16 sg:pub.10.1007/s00198-006-0304-x
    17 sg:pub.10.1007/s00198-007-0532-8
    18 sg:pub.10.1007/s00198-009-0908-z
    19 sg:pub.10.1007/s00198-011-1703-1
    20 sg:pub.10.1007/s001980050108
    21 sg:pub.10.1007/s00223-006-0216-y
    22 sg:pub.10.1007/s002239900501
    23 sg:pub.10.1007/s11154-006-9004-2
    24 https://doi.org/10.1016/0002-9343(85)90343-2
    25 https://doi.org/10.1016/0140-6736(93)92555-8
    26 https://doi.org/10.1016/j.bone.2003.10.001
    27 https://doi.org/10.1016/j.ejrad.2008.04.064
    28 https://doi.org/10.1016/j.ejrad.2009.04.074
    29 https://doi.org/10.1016/s0021-9290(98)00074-8
    30 https://doi.org/10.1016/s0021-9290(99)00099-8
    31 https://doi.org/10.1016/s1076-6332(05)80286-7
    32 https://doi.org/10.1056/nejm199503233321202
    33 https://doi.org/10.1056/nejmra053077
    34 https://doi.org/10.1118/1.3215535
    35 https://doi.org/10.1118/1.3528125
    36 https://doi.org/10.1136/bmj.312.7041.1254
    37 https://doi.org/10.1148/radiol.10090232
    38 https://doi.org/10.1148/radiol.2472070982
    39 https://doi.org/10.1210/jc.2004-1568
    40 https://doi.org/10.1359/jbmr.061206
    41 https://doi.org/10.1359/jbmr.070301
    42 https://doi.org/10.1359/jbmr.090714
    43 https://doi.org/10.1359/jbmr.2000.15.1.32
    44 https://doi.org/10.1359/jbmr.2000.15.4.691
    45 https://doi.org/10.1359/jbmr.2001.16.4.697
    46 https://doi.org/10.2106/00004623-197052030-00005
    47 schema:datePublished 2013-01
    48 schema:datePublishedReg 2013-01-01
    49 schema:description Fracture of the proximal femur is a major public health problem in elderly persons. It has recently been suggested that combining texture analysis and bone mineral density measurement improves the failure load prediction in human femurs. In this study, we aimed to compare bone texture analysis with three-dimensional (3D) microarchitecture and mechanical properties of trabecular bone in osteoporotic femurs. Eight femoral heads from osteoporotic patients who fractured their femoral neck provided 31 bone cores. Bone samples were studied using a new high-resolution digital X-ray device (BMA™, D3A Medical Systems) allowing for texture analysis with fractal parameter H (mean), and were examined using micro-computed tomography (microCT) for 3D microarchitecture. Finally, uniaxial compression tests to failure were performed to estimate failure load and apparent modulus of bone samples. The fractal parameter H (mean) was strongly correlated with bone volume fraction (BV/TV) (r = 0.84) and trabecular thickness (Tb.Th) (r = 0.91) (p < 0.01). H (mean) was also markedly correlated with failure load (r = 0.84) and apparent modulus (r = 0.71) of core samples (p < 0.01). Bone volume fraction (BV/TV) and trabecular thickness (Tb.Th) demonstrated significant correlations with failure load (r = 0.85 and 0.72, respectively) and apparent modulus (r = 0.72 and 0.64, respectively) (p < 0.01). Overall, the best predictors of failure load were H (mean), bone volume fraction, and trabecular thickness, with r (2) coefficients of 0.83, 0.76, and 0.80 respectively. This study shows that the fractal parameter H (mean) is correlated with 3D microCT parameters and mechanical properties of femoral head bone samples, which suggests that radiographic texture analysis is a suitable approach for trabecular bone microarchitecture assessment in osteoporotic femurs.
    50 schema:genre research_article
    51 schema:inLanguage en
    52 schema:isAccessibleForFree false
    53 schema:isPartOf N36448c47074449dba0b69de957f03707
    54 N535f15c86b144ed2af679c4e46b368c8
    55 sg:journal.1312216
    56 schema:name Bone texture analysis is correlated with three-dimensional microarchitecture and mechanical properties of trabecular bone in osteoporotic femurs
    57 schema:pagination 82-88
    58 schema:productId N0a19748012ee40d796d63883d51df269
    59 Nb5fe050402164fa4bf22cac2c6523618
    60 Nd676bf21cb13410ab172671c4f63f5db
    61 Ne69bfb4740ea47b8a166a2acf3fe5f0b
    62 Ned9cbffd5ab94242af2c31f448a172c5
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027090387
    64 https://doi.org/10.1007/s00774-012-0375-z
    65 schema:sdDatePublished 2019-04-10T19:09
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher Nbc7c9fd40dee489ab83b0401b0df31ed
    68 schema:url http://link.springer.com/10.1007%2Fs00774-012-0375-z
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N02345ebe612f42b1a8cbf5c89f9a6599 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Hip Fractures
    74 rdf:type schema:DefinedTerm
    75 N05bf1c043bc04d82a3a63f2dc4f65044 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Male
    77 rdf:type schema:DefinedTerm
    78 N0a19748012ee40d796d63883d51df269 schema:name nlm_unique_id
    79 schema:value 9436705
    80 rdf:type schema:PropertyValue
    81 N0e482e9d8aac4277b4be642d32c68afa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Female
    83 rdf:type schema:DefinedTerm
    84 N36448c47074449dba0b69de957f03707 schema:issueNumber 1
    85 rdf:type schema:PublicationIssue
    86 N49fd8dc0b7b74ffe9d72a38056d3b9f0 rdf:first sg:person.0603057355.66
    87 rdf:rest Nee7e79e96a0c424cae0be3f679ee46ad
    88 N4a2f42c7c6e64d6a986d9d18b9113555 rdf:first sg:person.01075414101.50
    89 rdf:rest Ncec047ecc15444ca80524d081fb68127
    90 N535f15c86b144ed2af679c4e46b368c8 schema:volumeNumber 31
    91 rdf:type schema:PublicationVolume
    92 N84ea2919d7204020828344120d357229 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Aged, 80 and over
    94 rdf:type schema:DefinedTerm
    95 N877d1a84ad7440fb919cf57480cf38fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Humans
    97 rdf:type schema:DefinedTerm
    98 N884848c2f72944c68283ed04ab9de05d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Osteoporosis, Postmenopausal
    100 rdf:type schema:DefinedTerm
    101 Na8c6f7f1e5944d03a9ec393aa24a9c13 rdf:first sg:person.01042477444.47
    102 rdf:rest rdf:nil
    103 Nb5fe050402164fa4bf22cac2c6523618 schema:name readcube_id
    104 schema:value 810cc8a482c472c2cff2db351bb5502674f83f50c8b14dde03ae98c50a8dc9f4
    105 rdf:type schema:PropertyValue
    106 Nbc6c34e8cac449cba02295151e22ea05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Aged
    108 rdf:type schema:DefinedTerm
    109 Nbc7c9fd40dee489ab83b0401b0df31ed schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 Nbe6429ed6e8747a19bc2a0edd5102c85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Femur Head
    113 rdf:type schema:DefinedTerm
    114 Nc297760633a247eeaed9ec231cfd3177 rdf:first sg:person.014676176713.57
    115 rdf:rest N4a2f42c7c6e64d6a986d9d18b9113555
    116 Ncec047ecc15444ca80524d081fb68127 rdf:first sg:person.0730443221.94
    117 rdf:rest Nd98a1d53aa764f3f8884f01fd8eab12c
    118 Nd676bf21cb13410ab172671c4f63f5db schema:name pubmed_id
    119 schema:value 22886379
    120 rdf:type schema:PropertyValue
    121 Nd8bad571d33641ce941d244948e23586 rdf:first sg:person.01261070567.88
    122 rdf:rest Nfe1010bdea5e4431b54b370ae06f0dd6
    123 Nd98a1d53aa764f3f8884f01fd8eab12c rdf:first sg:person.01301157043.14
    124 rdf:rest Nd8bad571d33641ce941d244948e23586
    125 Nddab4e600b194827a2c17b37e4cf7bb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Bone Density
    127 rdf:type schema:DefinedTerm
    128 Ne69bfb4740ea47b8a166a2acf3fe5f0b schema:name dimensions_id
    129 schema:value pub.1027090387
    130 rdf:type schema:PropertyValue
    131 Ned9cbffd5ab94242af2c31f448a172c5 schema:name doi
    132 schema:value 10.1007/s00774-012-0375-z
    133 rdf:type schema:PropertyValue
    134 Nee7e79e96a0c424cae0be3f679ee46ad rdf:first sg:person.0635074323.73
    135 rdf:rest Nc297760633a247eeaed9ec231cfd3177
    136 Nfe1010bdea5e4431b54b370ae06f0dd6 rdf:first sg:person.01163650115.41
    137 rdf:rest Na8c6f7f1e5944d03a9ec393aa24a9c13
    138 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Medical and Health Sciences
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Clinical Sciences
    143 rdf:type schema:DefinedTerm
    144 sg:journal.1312216 schema:issn 0914-8779
    145 1435-5604
    146 schema:name Journal of Bone and Mineral Metabolism
    147 rdf:type schema:Periodical
    148 sg:person.01042477444.47 schema:affiliation https://www.grid.ac/institutes/grid.493284.0
    149 schema:familyName Chabrand
    150 schema:givenName Patrick
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042477444.47
    152 rdf:type schema:Person
    153 sg:person.01075414101.50 schema:affiliation https://www.grid.ac/institutes/grid.473800.8
    154 schema:familyName Rosa
    155 schema:givenName Benoît
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075414101.50
    157 rdf:type schema:Person
    158 sg:person.01163650115.41 schema:affiliation https://www.grid.ac/institutes/grid.493284.0
    159 schema:familyName Champsaur
    160 schema:givenName Pierre
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163650115.41
    162 rdf:type schema:Person
    163 sg:person.01261070567.88 schema:affiliation https://www.grid.ac/institutes/grid.414438.e
    164 schema:familyName Argenson
    165 schema:givenName Jean-Noël
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261070567.88
    167 rdf:type schema:Person
    168 sg:person.01301157043.14 schema:affiliation https://www.grid.ac/institutes/grid.414438.e
    169 schema:familyName Maurel
    170 schema:givenName Boris
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301157043.14
    172 rdf:type schema:Person
    173 sg:person.014676176713.57 schema:affiliation https://www.grid.ac/institutes/grid.473800.8
    174 schema:familyName Chaari
    175 schema:givenName Fahmi
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676176713.57
    177 rdf:type schema:Person
    178 sg:person.0603057355.66 schema:affiliation https://www.grid.ac/institutes/grid.493284.0
    179 schema:familyName Le Corroller
    180 schema:givenName Thomas
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603057355.66
    182 rdf:type schema:Person
    183 sg:person.0635074323.73 schema:affiliation https://www.grid.ac/institutes/grid.493284.0
    184 schema:familyName Pithioux
    185 schema:givenName Martine
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635074323.73
    187 rdf:type schema:Person
    188 sg:person.0730443221.94 schema:affiliation https://www.grid.ac/institutes/grid.414438.e
    189 schema:familyName Parratte
    190 schema:givenName Sébastien
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730443221.94
    192 rdf:type schema:Person
    193 sg:pub.10.1007/bf01623184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008522902
    194 https://doi.org/10.1007/bf01623184
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/bf01774015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012558994
    197 https://doi.org/10.1007/bf01774015
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s00198-006-0074-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046963439
    200 https://doi.org/10.1007/s00198-006-0074-5
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00198-006-0304-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032049459
    203 https://doi.org/10.1007/s00198-006-0304-x
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00198-007-0532-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053390154
    206 https://doi.org/10.1007/s00198-007-0532-8
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00198-009-0908-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025441170
    209 https://doi.org/10.1007/s00198-009-0908-z
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00198-011-1703-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043832540
    212 https://doi.org/10.1007/s00198-011-1703-1
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s001980050108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006146102
    215 https://doi.org/10.1007/s001980050108
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00223-006-0216-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007292643
    218 https://doi.org/10.1007/s00223-006-0216-y
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s002239900501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021780804
    221 https://doi.org/10.1007/s002239900501
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s11154-006-9004-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017468143
    224 https://doi.org/10.1007/s11154-006-9004-2
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/0002-9343(85)90343-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015178444
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/0140-6736(93)92555-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027878716
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.bone.2003.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033847047
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.ejrad.2008.04.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009423519
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.ejrad.2009.04.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029228103
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/s0021-9290(98)00074-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017760923
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/s0021-9290(99)00099-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050183359
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/s1076-6332(05)80286-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012746355
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1056/nejm199503233321202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002087109
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1056/nejmra053077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000793776
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1118/1.3215535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008326969
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1118/1.3528125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033237818
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1136/bmj.312.7041.1254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062775836
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1148/radiol.10090232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036900707
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1148/radiol.2472070982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022185580
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1210/jc.2004-1568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064288031
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1359/jbmr.061206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015339844
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1359/jbmr.070301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021072279
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1359/jbmr.090714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011871747
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1359/jbmr.2000.15.1.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051030300
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1359/jbmr.2000.15.4.691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038435580
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1359/jbmr.2001.16.4.697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024115328
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.2106/00004623-197052030-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068884850
    271 rdf:type schema:CreativeWork
    272 https://www.grid.ac/institutes/grid.414438.e schema:alternateName Hôpital Sainte-Marguerite
    273 schema:name Orthopedic Surgery, Hôpital Sainte-Marguerite, 270 Boulevard de Sainte-Marguerite, 13009, Marseille, France
    274 Radiology Department, Hôpital Sainte-Marguerite, 270 Boulevard de Sainte-Marguerite, 13009, Marseille, France
    275 rdf:type schema:Organization
    276 https://www.grid.ac/institutes/grid.473800.8 schema:alternateName Laboratory of Industrial and Human Automation Control, Mechanical Engineering and Computer Science
    277 schema:name LAMIH, UMR 8201 CNRS et Université de Valenciennes, Campus du Mont-Houy, 59300, Valenciennes, France
    278 rdf:type schema:Organization
    279 https://www.grid.ac/institutes/grid.493284.0 schema:alternateName Institut des Sciences du Mouvement Etienne-Jules Marey
    280 schema:name Institut des sciences du mouvement, UMR 7287 CNRS et Aix-Marseille Université, CP 910, Avenue de Luminy, 13288, Marseille Cedex 09, France
    281 Radiology Department, Hôpital Sainte-Marguerite, 270 Boulevard de Sainte-Marguerite, 13009, Marseille, France
    282 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...