Prediction of lysine ubiquitination with mRMR feature selection and analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-04

AUTHORS

Yudong Cai, Tao Huang, Lele Hu, Xiaohe Shi, Lu Xie, Yixue Li

ABSTRACT

Ubiquitination, one of the most important post-translational modifications of proteins, occurs when ubiquitin (a small 76-amino acid protein) is attached to lysine on a target protein. It often commits the labeled protein to degradation and plays important roles in regulating many cellular processes implicated in a variety of diseases. Since ubiquitination is rapid and reversible, it is time-consuming and labor-intensive to identify ubiquitination sites using conventional experimental approaches. To efficiently discover lysine-ubiquitination sites, a sequence-based predictor of ubiquitination site was developed based on nearest neighbor algorithm. We used the maximum relevance and minimum redundancy principle to identify the key features and the incremental feature selection procedure to optimize the prediction engine. PSSM conservation scores, amino acid factors and disorder scores of the surrounding sequence formed the optimized 456 features. The Mathew's correlation coefficient (MCC) of our ubiquitination site predictor achieved 0.142 by jackknife cross-validation test on a large benchmark dataset. In independent test, the MCC of our method was 0.139, higher than the existing ubiquitination site predictor UbiPred and UbPred. The MCCs of UbiPred and UbPred on the same test set were 0.135 and 0.117, respectively. Our analysis shows that the conservation of amino acids at and around lysine plays an important role in ubiquitination site prediction. What's more, disorder and ubiquitination have a strong relevance. These findings might provide useful insights for studying the mechanisms of ubiquitination and modulating the ubiquitination pathway, potentially leading to potential therapeutic strategies in the future. More... »

PAGES

1387-1395

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00726-011-0835-0

DOI

http://dx.doi.org/10.1007/s00726-011-0835-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029748173

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21267749


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lysine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ubiquitination", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "Institute of Systems Biology, Shanghai University, 200444, Shanghai, People\u2019s Republic of China", 
            "Centre for Computational Systems Biology, Fudan University, 200433, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Yudong", 
        "id": "sg:person.01344714423.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344714423.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Center For Bioinformation Technology", 
          "id": "https://www.grid.ac/institutes/grid.58095.31", 
          "name": [
            "Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, People\u2019s Republic of China", 
            "Shanghai Center for Bioinformation Technology, 200235, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Tao", 
        "id": "sg:person.01215006016.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215006016.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Institute of Systems Biology, Shanghai University, 200444, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Lele", 
        "id": "sg:person.0712475103.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712475103.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore Bioimaging Consortium", 
          "id": "https://www.grid.ac/institutes/grid.452254.0", 
          "name": [
            "Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 138667, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Xiaohe", 
        "id": "sg:person.01006623757.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006623757.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Center For Bioinformation Technology", 
          "id": "https://www.grid.ac/institutes/grid.58095.31", 
          "name": [
            "Shanghai Center for Bioinformation Technology, 200235, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Lu", 
        "id": "sg:person.01050126306.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050126306.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Center For Bioinformation Technology", 
          "id": "https://www.grid.ac/institutes/grid.58095.31", 
          "name": [
            "Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, People\u2019s Republic of China", 
            "Shanghai Center for Bioinformation Technology, 200235, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yixue", 
        "id": "sg:person.012163147207.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012163147207.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/01.res.0000264500.11888.f0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000240002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.res.0000264500.11888.f0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000240002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.res.0000264500.11888.f0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000240002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.biochem.67.1.425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004475027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2006.07.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007823956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1097-2765(03)00234-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010317741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011067150", 
          "https://doi.org/10.1186/1471-2105-6-33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012387349", 
          "https://doi.org/10.1038/nrm1700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012387349", 
          "https://doi.org/10.1038/nrm1700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014668137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015576304", 
          "https://doi.org/10.1186/1471-2105-9-310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015576304", 
          "https://doi.org/10.1186/1471-2105-9-310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.cellbio.19.110701.154617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016222049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-5876-6-44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017653188", 
          "https://doi.org/10.1186/1479-5876-6-44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017959108", 
          "https://doi.org/10.1186/1471-2105-7-208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0408677102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018894676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022479411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07391102.2007.10507154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023090836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024436208", 
          "https://doi.org/10.1186/1471-2105-9-401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0955-0674(03)00010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024560646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0955-0674(03)00010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024560646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0010972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025297702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0008126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025682935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb0805-750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028892033", 
          "https://doi.org/10.1038/ncb0805-750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb0805-750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028892033", 
          "https://doi.org/10.1038/ncb0805-750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb0805-750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028892033", 
          "https://doi.org/10.1038/ncb0805-750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35056583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031974910", 
          "https://doi.org/10.1038/35056583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35056583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031974910", 
          "https://doi.org/10.1038/35056583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)00057-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032538085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio0805-130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032875946", 
          "https://doi.org/10.1038/nchembio0805-130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio0805-130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032875946", 
          "https://doi.org/10.1038/nchembio0805-130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio0805-130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032875946", 
          "https://doi.org/10.1038/nchembio0805-130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0012726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034645950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034949528", 
          "https://doi.org/10.1038/nrc1994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034949528", 
          "https://doi.org/10.1038/nrc1994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ceb.2004.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035828624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.5.412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036490773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0409767102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038117623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0011900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038650622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi0485528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040221236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi0485528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040221236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molimm.2008.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041939030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0503285102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044415686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.biochem.70.1.503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044705327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-5-r50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045988361", 
          "https://doi.org/10.1186/gb-2009-10-5-r50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416703a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048675045", 
          "https://doi.org/10.1038/416703a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416703a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048675045", 
          "https://doi.org/10.1038/416703a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m900030-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048771248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051275304", 
          "https://doi.org/10.1038/35042620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051275304", 
          "https://doi.org/10.1038/35042620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052254784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2008.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052932534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053196047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053196047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr800717y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056294600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5443.1321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062567277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-145-9-200611070-00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073709002"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "Ubiquitination, one of the most important post-translational modifications of proteins, occurs when ubiquitin (a small 76-amino acid protein) is attached to lysine on a target protein. It often commits the labeled protein to degradation and plays important roles in regulating many cellular processes implicated in a variety of diseases. Since ubiquitination is rapid and reversible, it is time-consuming and labor-intensive to identify ubiquitination sites using conventional experimental approaches. To efficiently discover lysine-ubiquitination sites, a sequence-based predictor of ubiquitination site was developed based on nearest neighbor algorithm. We used the maximum relevance and minimum redundancy principle to identify the key features and the incremental feature selection procedure to optimize the prediction engine. PSSM conservation scores, amino acid factors and disorder scores of the surrounding sequence formed the optimized 456 features. The Mathew's correlation coefficient (MCC) of our ubiquitination site predictor achieved 0.142 by jackknife cross-validation test on a large benchmark dataset. In independent test, the MCC of our method was 0.139, higher than the existing ubiquitination site predictor UbiPred and UbPred. The MCCs of UbiPred and UbPred on the same test set were 0.135 and 0.117, respectively. Our analysis shows that the conservation of amino acids at and around lysine plays an important role in ubiquitination site prediction. What's more, disorder and ubiquitination have a strong relevance. These findings might provide useful insights for studying the mechanisms of ubiquitination and modulating the ubiquitination pathway, potentially leading to potential therapeutic strategies in the future.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00726-011-0835-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5008180", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1101866", 
        "issn": [
          "0939-4451", 
          "1438-2199"
        ], 
        "name": "Amino Acids", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Prediction of lysine ubiquitination with mRMR feature selection and analysis", 
    "pagination": "1387-1395", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8db702ce3916c39dd2debfa2cdf98bbd5af67410ee123d70672dd87d59c6f6ec"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21267749"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9200312"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00726-011-0835-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029748173"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00726-011-0835-0", 
      "https://app.dimensions.ai/details/publication/pub.1029748173"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00726-011-0835-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00726-011-0835-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00726-011-0835-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00726-011-0835-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00726-011-0835-0'


 

This table displays all metadata directly associated to this object as RDF triples.

290 TRIPLES      21 PREDICATES      80 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00726-011-0835-0 schema:about N0945a38daa5040fdb69220090c7162eb
2 N394d33c9c6694e31962357f47240672d
3 N4b321fd1886a4cae98d16b5c834b3dc1
4 N59e88e89c9224082b4cb32489313deb7
5 Ndc74f5244acd432c92ecedcf41770c46
6 Neb9651f4dee04a8fa57901d2bd04e744
7 Nf02310fe2de84192901906c4e20e8124
8 anzsrc-for:06
9 anzsrc-for:0601
10 schema:author N5f7561b6f5124dde99adab662ec24eb5
11 schema:citation sg:pub.10.1038/35042620
12 sg:pub.10.1038/35056583
13 sg:pub.10.1038/416703a
14 sg:pub.10.1038/ncb0805-750
15 sg:pub.10.1038/nchembio0805-130
16 sg:pub.10.1038/nrc1994
17 sg:pub.10.1038/nrm1700
18 sg:pub.10.1186/1471-2105-6-33
19 sg:pub.10.1186/1471-2105-7-208
20 sg:pub.10.1186/1471-2105-9-310
21 sg:pub.10.1186/1471-2105-9-401
22 sg:pub.10.1186/1479-5876-6-44
23 sg:pub.10.1186/gb-2009-10-5-r50
24 https://doi.org/10.1002/prot.22555
25 https://doi.org/10.1016/j.bbrc.2006.07.149
26 https://doi.org/10.1016/j.ceb.2004.02.005
27 https://doi.org/10.1016/j.cmpb.2008.11.003
28 https://doi.org/10.1016/j.molimm.2008.09.009
29 https://doi.org/10.1016/s0092-8674(00)00057-x
30 https://doi.org/10.1016/s0955-0674(03)00010-3
31 https://doi.org/10.1016/s1097-2765(03)00234-x
32 https://doi.org/10.1021/bi0485528
33 https://doi.org/10.1021/pr800717y
34 https://doi.org/10.1073/pnas.0408677102
35 https://doi.org/10.1073/pnas.0409767102
36 https://doi.org/10.1073/pnas.0503285102
37 https://doi.org/10.1074/mcp.m900030-mcp200
38 https://doi.org/10.1080/07391102.2007.10507154
39 https://doi.org/10.1093/bioinformatics/16.5.412
40 https://doi.org/10.1093/bioinformatics/btl158
41 https://doi.org/10.1093/nar/25.17.3389
42 https://doi.org/10.1093/nar/28.1.374
43 https://doi.org/10.1093/nar/gkl893
44 https://doi.org/10.1109/tpami.2005.159
45 https://doi.org/10.1126/science.286.5443.1321
46 https://doi.org/10.1146/annurev.biochem.67.1.425
47 https://doi.org/10.1146/annurev.biochem.70.1.503
48 https://doi.org/10.1146/annurev.cellbio.19.110701.154617
49 https://doi.org/10.1161/01.res.0000264500.11888.f0
50 https://doi.org/10.1371/journal.pone.0008126
51 https://doi.org/10.1371/journal.pone.0010972
52 https://doi.org/10.1371/journal.pone.0011900
53 https://doi.org/10.1371/journal.pone.0012726
54 https://doi.org/10.7326/0003-4819-145-9-200611070-00010
55 schema:datePublished 2012-04
56 schema:datePublishedReg 2012-04-01
57 schema:description Ubiquitination, one of the most important post-translational modifications of proteins, occurs when ubiquitin (a small 76-amino acid protein) is attached to lysine on a target protein. It often commits the labeled protein to degradation and plays important roles in regulating many cellular processes implicated in a variety of diseases. Since ubiquitination is rapid and reversible, it is time-consuming and labor-intensive to identify ubiquitination sites using conventional experimental approaches. To efficiently discover lysine-ubiquitination sites, a sequence-based predictor of ubiquitination site was developed based on nearest neighbor algorithm. We used the maximum relevance and minimum redundancy principle to identify the key features and the incremental feature selection procedure to optimize the prediction engine. PSSM conservation scores, amino acid factors and disorder scores of the surrounding sequence formed the optimized 456 features. The Mathew's correlation coefficient (MCC) of our ubiquitination site predictor achieved 0.142 by jackknife cross-validation test on a large benchmark dataset. In independent test, the MCC of our method was 0.139, higher than the existing ubiquitination site predictor UbiPred and UbPred. The MCCs of UbiPred and UbPred on the same test set were 0.135 and 0.117, respectively. Our analysis shows that the conservation of amino acids at and around lysine plays an important role in ubiquitination site prediction. What's more, disorder and ubiquitination have a strong relevance. These findings might provide useful insights for studying the mechanisms of ubiquitination and modulating the ubiquitination pathway, potentially leading to potential therapeutic strategies in the future.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree false
61 schema:isPartOf N0e2a8279aa8f41bc83f03e36760ea872
62 N2b5eaaaecb4b4df184de0ad912319f9b
63 sg:journal.1101866
64 schema:name Prediction of lysine ubiquitination with mRMR feature selection and analysis
65 schema:pagination 1387-1395
66 schema:productId N29819620fbaf49809e5b99873d9f2556
67 N2ca4a59a706d432a9a9109a8aea6b8eb
68 N79ed163bbe9647fa9c3fed5988eca4f5
69 Nc2bc03234a414177b498197c10407a7f
70 Nd1db49090eed462ea754b6c6b284c469
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029748173
72 https://doi.org/10.1007/s00726-011-0835-0
73 schema:sdDatePublished 2019-04-10T18:20
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N942a09ebb5f2490ba670dff0cb3a7eca
76 schema:url http://link.springer.com/10.1007%2Fs00726-011-0835-0
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N0945a38daa5040fdb69220090c7162eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Ubiquitination
82 rdf:type schema:DefinedTerm
83 N0e2a8279aa8f41bc83f03e36760ea872 schema:volumeNumber 42
84 rdf:type schema:PublicationVolume
85 N1e069467a7eb41beb67bfa4b7e00bcf9 rdf:first sg:person.012163147207.05
86 rdf:rest rdf:nil
87 N29819620fbaf49809e5b99873d9f2556 schema:name dimensions_id
88 schema:value pub.1029748173
89 rdf:type schema:PropertyValue
90 N2b5eaaaecb4b4df184de0ad912319f9b schema:issueNumber 4
91 rdf:type schema:PublicationIssue
92 N2ca4a59a706d432a9a9109a8aea6b8eb schema:name nlm_unique_id
93 schema:value 9200312
94 rdf:type schema:PropertyValue
95 N394d33c9c6694e31962357f47240672d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Proteins
97 rdf:type schema:DefinedTerm
98 N4b321fd1886a4cae98d16b5c834b3dc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Databases, Protein
100 rdf:type schema:DefinedTerm
101 N506c3f0cc0ba474fb104f5da4226d3a8 rdf:first sg:person.0712475103.18
102 rdf:rest Nc192ed244b0548c6bcf57bd191d70f99
103 N59e88e89c9224082b4cb32489313deb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Computational Biology
105 rdf:type schema:DefinedTerm
106 N5f7561b6f5124dde99adab662ec24eb5 rdf:first sg:person.01344714423.17
107 rdf:rest Nb02fd0902be54cb084c78d4ada756253
108 N79ed163bbe9647fa9c3fed5988eca4f5 schema:name doi
109 schema:value 10.1007/s00726-011-0835-0
110 rdf:type schema:PropertyValue
111 N92ddcbbe510d48af87bfcb0592de59bf rdf:first sg:person.01050126306.16
112 rdf:rest N1e069467a7eb41beb67bfa4b7e00bcf9
113 N942a09ebb5f2490ba670dff0cb3a7eca schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nb02fd0902be54cb084c78d4ada756253 rdf:first sg:person.01215006016.18
116 rdf:rest N506c3f0cc0ba474fb104f5da4226d3a8
117 Nc192ed244b0548c6bcf57bd191d70f99 rdf:first sg:person.01006623757.23
118 rdf:rest N92ddcbbe510d48af87bfcb0592de59bf
119 Nc2bc03234a414177b498197c10407a7f schema:name readcube_id
120 schema:value 8db702ce3916c39dd2debfa2cdf98bbd5af67410ee123d70672dd87d59c6f6ec
121 rdf:type schema:PropertyValue
122 Nd1db49090eed462ea754b6c6b284c469 schema:name pubmed_id
123 schema:value 21267749
124 rdf:type schema:PropertyValue
125 Ndc74f5244acd432c92ecedcf41770c46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Algorithms
127 rdf:type schema:DefinedTerm
128 Neb9651f4dee04a8fa57901d2bd04e744 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Lysine
130 rdf:type schema:DefinedTerm
131 Nf02310fe2de84192901906c4e20e8124 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Amino Acid Sequence
133 rdf:type schema:DefinedTerm
134 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biological Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
138 schema:name Biochemistry and Cell Biology
139 rdf:type schema:DefinedTerm
140 sg:grant.5008180 http://pending.schema.org/fundedItem sg:pub.10.1007/s00726-011-0835-0
141 rdf:type schema:MonetaryGrant
142 sg:journal.1101866 schema:issn 0939-4451
143 1438-2199
144 schema:name Amino Acids
145 rdf:type schema:Periodical
146 sg:person.01006623757.23 schema:affiliation https://www.grid.ac/institutes/grid.452254.0
147 schema:familyName Shi
148 schema:givenName Xiaohe
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006623757.23
150 rdf:type schema:Person
151 sg:person.01050126306.16 schema:affiliation https://www.grid.ac/institutes/grid.58095.31
152 schema:familyName Xie
153 schema:givenName Lu
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050126306.16
155 rdf:type schema:Person
156 sg:person.01215006016.18 schema:affiliation https://www.grid.ac/institutes/grid.58095.31
157 schema:familyName Huang
158 schema:givenName Tao
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215006016.18
160 rdf:type schema:Person
161 sg:person.012163147207.05 schema:affiliation https://www.grid.ac/institutes/grid.58095.31
162 schema:familyName Li
163 schema:givenName Yixue
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012163147207.05
165 rdf:type schema:Person
166 sg:person.01344714423.17 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
167 schema:familyName Cai
168 schema:givenName Yudong
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344714423.17
170 rdf:type schema:Person
171 sg:person.0712475103.18 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
172 schema:familyName Hu
173 schema:givenName Lele
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712475103.18
175 rdf:type schema:Person
176 sg:pub.10.1038/35042620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051275304
177 https://doi.org/10.1038/35042620
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/35056583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031974910
180 https://doi.org/10.1038/35056583
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/416703a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048675045
183 https://doi.org/10.1038/416703a
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ncb0805-750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028892033
186 https://doi.org/10.1038/ncb0805-750
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nchembio0805-130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032875946
189 https://doi.org/10.1038/nchembio0805-130
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nrc1994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034949528
192 https://doi.org/10.1038/nrc1994
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nrm1700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012387349
195 https://doi.org/10.1038/nrm1700
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/1471-2105-6-33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011067150
198 https://doi.org/10.1186/1471-2105-6-33
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1471-2105-7-208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017959108
201 https://doi.org/10.1186/1471-2105-7-208
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/1471-2105-9-310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015576304
204 https://doi.org/10.1186/1471-2105-9-310
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/1471-2105-9-401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024436208
207 https://doi.org/10.1186/1471-2105-9-401
208 rdf:type schema:CreativeWork
209 sg:pub.10.1186/1479-5876-6-44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017653188
210 https://doi.org/10.1186/1479-5876-6-44
211 rdf:type schema:CreativeWork
212 sg:pub.10.1186/gb-2009-10-5-r50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045988361
213 https://doi.org/10.1186/gb-2009-10-5-r50
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1002/prot.22555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053196047
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.bbrc.2006.07.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007823956
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.ceb.2004.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035828624
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.cmpb.2008.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052932534
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.molimm.2008.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041939030
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/s0092-8674(00)00057-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032538085
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/s0955-0674(03)00010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024560646
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/s1097-2765(03)00234-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010317741
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1021/bi0485528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040221236
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1021/pr800717y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056294600
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1073/pnas.0408677102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018894676
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1073/pnas.0409767102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038117623
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1073/pnas.0503285102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044415686
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1074/mcp.m900030-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048771248
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1080/07391102.2007.10507154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023090836
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/bioinformatics/16.5.412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036490773
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/bioinformatics/btl158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014668137
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/nar/28.1.374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052254784
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/nar/gkl893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022479411
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1109/tpami.2005.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742820
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1126/science.286.5443.1321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062567277
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1146/annurev.biochem.67.1.425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004475027
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1146/annurev.biochem.70.1.503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044705327
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1146/annurev.cellbio.19.110701.154617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016222049
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1161/01.res.0000264500.11888.f0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000240002
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1371/journal.pone.0008126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025682935
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1371/journal.pone.0010972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025297702
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1371/journal.pone.0011900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038650622
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1371/journal.pone.0012726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034645950
274 rdf:type schema:CreativeWork
275 https://doi.org/10.7326/0003-4819-145-9-200611070-00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073709002
276 rdf:type schema:CreativeWork
277 https://www.grid.ac/institutes/grid.39436.3b schema:alternateName Shanghai University
278 schema:name Institute of Systems Biology, Shanghai University, 200444, Shanghai, People’s Republic of China
279 rdf:type schema:Organization
280 https://www.grid.ac/institutes/grid.452254.0 schema:alternateName Singapore Bioimaging Consortium
281 schema:name Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 138667, Singapore, Singapore
282 rdf:type schema:Organization
283 https://www.grid.ac/institutes/grid.58095.31 schema:alternateName Shanghai Center For Bioinformation Technology
284 schema:name Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, People’s Republic of China
285 Shanghai Center for Bioinformation Technology, 200235, Shanghai, People’s Republic of China
286 rdf:type schema:Organization
287 https://www.grid.ac/institutes/grid.8547.e schema:alternateName Fudan University
288 schema:name Centre for Computational Systems Biology, Fudan University, 200433, Shanghai, People’s Republic of China
289 Institute of Systems Biology, Shanghai University, 200444, Shanghai, People’s Republic of China
290 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...