The Metabolic Profile of Stable Ischemic Heart Disease by Serum 1H NMR View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10-13

AUTHORS

Tiina Titma, Min-Ji Shin, Christian Ludwig, Ulrich L. Günther, Marika Pikta, Galina Zemtsovskaja, Margus Viigimaa, Risto Tanner, Ago Samoson

ABSTRACT

Ischemic heart disease (IHD) is the most common cause of death in the world. Metabolic profiling is an innovative and reliable new method to detect more sensitive biomarkers identifying altered health conditions specifically among the variety of patients with different risk factors. We evaluated the metabolic profile of filtered serum of stable IHD patients (ICD10 codes I20 and I25.2, ischemic heart disease without or with previous myocardial infarction respectively) using proton nuclear magnetic resonance spectroscopy (NMR). The filtered venous serum from age- and gender-matched stable IHD patients ICD10 coded I20 (n = 13), I25.2 (n = 6) and control individuals (n = 19) were analyzed using one-dimensional proton nuclear magnetic resonance (1H NMR) spectroscopy. These spectra were used for metabolic profiling and concentration calibration (Chenomx Inc.) followed by statistical analysis using one-way ANOVA and principal component analysis (PCA). Chemometrics analysis showed a significant distinction between the patients and control individuals. The stable IHD patients were exemplified by the increased concentration of acetylacetate, choline, betaine, formate, pyruvate and by the decreased concentration of alanine, creatine, glycine, histidine, lactate, proline, urea and other biomolecules. The major implications found in the serum of IHD patients are related to energy metabolism and potentially altered microbiome. PCA of 1H NMR detected serum metabolites exhibit a significant difference of stable IHD patients and control individuals. These data demonstrate that metabolomics approach may be useful for the early detection of stable IHD, for detection of synergistic pathways involved in the development of altered health conditions, and molecular understanding of particular health condition. The differences of the detected metabolic profile of ischemic patients with or without previous myocardial infarction appear to be minor. This relatively inexpensive, non-invasive and reproducible approach may be useful for the molecular understanding and early prevention of IHD, improvement of surveillance and therapy. The study emerges the need for future investigations using larger cohort and possible longitudinal sight. More... »

PAGES

527-539

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00723-018-1084-0

DOI

http://dx.doi.org/10.1007/s00723-018-1084-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107600618


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 15A, 12618, Tallinn, Estonia", 
          "id": "http://www.grid.ac/institutes/grid.6988.f", 
          "name": [
            "Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 15A, 12618, Tallinn, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Titma", 
        "givenName": "Tiina", 
        "id": "sg:person.01007122510.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007122510.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 15A, 12618, Tallinn, Estonia", 
          "id": "http://www.grid.ac/institutes/grid.6988.f", 
          "name": [
            "Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 15A, 12618, Tallinn, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Min-Ji", 
        "id": "sg:person.016501655355.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016501655355.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Cancer and Genomic Sciences, University of Birmingham, B15 2TT, Birmingham, UK", 
          "id": "http://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "Institute of Cancer and Genomic Sciences, University of Birmingham, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ludwig", 
        "givenName": "Christian", 
        "id": "sg:person.01112544071.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112544071.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Cancer and Genomic Sciences, University of Birmingham, B15 2TT, Birmingham, UK", 
          "id": "http://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "Institute of Cancer and Genomic Sciences, University of Birmingham, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00fcnther", 
        "givenName": "Ulrich L.", 
        "id": "sg:person.0733543446.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733543446.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Estonia Medical Centre, J. S\u00fctiste tee 19, 13419, Tallinn, Estonia", 
          "id": "http://www.grid.ac/institutes/grid.454953.a", 
          "name": [
            "North Estonia Medical Centre, J. S\u00fctiste tee 19, 13419, Tallinn, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pikta", 
        "givenName": "Marika", 
        "id": "sg:person.010244241655.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244241655.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Estonia Medical Centre, J. S\u00fctiste tee 19, 13419, Tallinn, Estonia", 
          "id": "http://www.grid.ac/institutes/grid.454953.a", 
          "name": [
            "North Estonia Medical Centre, J. S\u00fctiste tee 19, 13419, Tallinn, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zemtsovskaja", 
        "givenName": "Galina", 
        "id": "sg:person.01024615232.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024615232.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Estonia Medical Centre, J. S\u00fctiste tee 19, 13419, Tallinn, Estonia", 
          "id": "http://www.grid.ac/institutes/grid.454953.a", 
          "name": [
            "Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 15A, 12618, Tallinn, Estonia", 
            "North Estonia Medical Centre, J. S\u00fctiste tee 19, 13419, Tallinn, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viigimaa", 
        "givenName": "Margus", 
        "id": "sg:person.01371571163.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371571163.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 15A, 12618, Tallinn, Estonia", 
          "id": "http://www.grid.ac/institutes/grid.6988.f", 
          "name": [
            "Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 15A, 12618, Tallinn, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanner", 
        "givenName": "Risto", 
        "id": "sg:person.01017342017.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017342017.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Warwick, CV4 7AL, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 15A, 12618, Tallinn, Estonia", 
            "Department of Physics, University of Warwick, CV4 7AL, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Samoson", 
        "givenName": "Ago", 
        "id": "sg:person.0647345040.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647345040.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep30785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008934411", 
          "https://doi.org/10.1038/srep30785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13054-015-0896-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038363295", 
          "https://doi.org/10.1186/s13054-015-0896-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00394-014-0751-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035184286", 
          "https://doi.org/10.1007/s00394-014-0751-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep30853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000071132", 
          "https://doi.org/10.1038/srep30853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002778922", 
          "https://doi.org/10.1038/nature06882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016369639", 
          "https://doi.org/10.1186/1471-2105-12-366"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-13", 
    "datePublishedReg": "2018-10-13", 
    "description": "Ischemic heart disease (IHD) is the most common cause of death in the world. Metabolic profiling is an innovative and reliable new method to detect more sensitive biomarkers identifying altered health conditions specifically among the variety of patients with different risk factors. We evaluated the metabolic profile of filtered serum of stable IHD patients (ICD10 codes I20 and I25.2, ischemic heart disease without or with previous myocardial infarction respectively) using proton nuclear magnetic resonance spectroscopy (NMR). The filtered venous serum from age- and gender-matched stable IHD patients ICD10 coded I20 (n\u2009=\u200913), I25.2 (n\u2009=\u20096) and control individuals (n\u2009=\u200919) were analyzed using one-dimensional proton nuclear magnetic resonance (1H NMR) spectroscopy. These spectra were used for metabolic profiling and concentration calibration (Chenomx Inc.) followed by statistical analysis using one-way ANOVA and principal component analysis (PCA). Chemometrics analysis showed a significant distinction between the patients and control individuals. The stable IHD patients were exemplified by the increased concentration of acetylacetate, choline, betaine, formate, pyruvate and by the decreased concentration of alanine, creatine, glycine, histidine, lactate, proline, urea and other biomolecules. The major implications found in the serum of IHD patients are related to energy metabolism and potentially altered microbiome. PCA of 1H NMR detected serum metabolites exhibit a significant difference of stable IHD patients and control individuals. These data demonstrate that metabolomics approach may be useful for the early detection of stable IHD, for detection of synergistic pathways involved in the development of altered health conditions, and molecular understanding of particular health condition. The differences of the detected metabolic profile of ischemic patients with or without previous myocardial infarction appear to be minor. This relatively inexpensive, non-invasive and reproducible approach may be useful for the molecular understanding and early prevention of IHD, improvement of surveillance and therapy. The study emerges the need for future investigations using larger cohort and possible longitudinal sight.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00723-018-1084-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6576183", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1102112", 
        "issn": [
          "0937-9347", 
          "1613-7507"
        ], 
        "name": "Applied Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "keywords": [
      "nuclear magnetic resonance spectroscopy", 
      "proton nuclear magnetic resonance spectroscopy", 
      "magnetic resonance spectroscopy", 
      "resonance spectroscopy", 
      "concentration calibration", 
      "chemometric analysis", 
      "spectroscopy", 
      "molecular understanding", 
      "metabolic profiling", 
      "ischemic heart disease", 
      "biomolecules", 
      "acetylacetate", 
      "stable ischemic heart disease", 
      "reproducible approach", 
      "stable IHD patients", 
      "formate", 
      "principal component analysis", 
      "IHD patients", 
      "metabolomics approach", 
      "concentration", 
      "spectra", 
      "heart disease", 
      "health conditions", 
      "detection", 
      "metabolic profile", 
      "new method", 
      "control individuals", 
      "previous myocardial infarction", 
      "betaine", 
      "histidine", 
      "different risk factors", 
      "conditions", 
      "variety of patients", 
      "particular health condition", 
      "risk factors", 
      "glycine", 
      "synergistic pathways", 
      "ischemic patients", 
      "myocardial infarction", 
      "common cause", 
      "reliable new method", 
      "venous serum", 
      "large cohort", 
      "patients", 
      "serum metabolites", 
      "early prevention", 
      "metabolites", 
      "sensitive biomarker", 
      "early detection", 
      "improvement of surveillance", 
      "analysis", 
      "one-way ANOVA", 
      "serum", 
      "component analysis", 
      "decreased concentration", 
      "profiling", 
      "I20", 
      "alanine", 
      "significant differences", 
      "investigation", 
      "disease", 
      "energy metabolism", 
      "method", 
      "proline", 
      "profile", 
      "variety", 
      "calibration", 
      "future investigations", 
      "individuals", 
      "significant distinction", 
      "infarction", 
      "therapy", 
      "cohort", 
      "statistical analysis", 
      "choline", 
      "prevention", 
      "biomarkers", 
      "approach", 
      "understanding", 
      "death", 
      "age", 
      "creatine", 
      "differences", 
      "ICD10", 
      "surveillance", 
      "cause", 
      "lactate", 
      "metabolism", 
      "microbiome", 
      "major implications", 
      "study", 
      "pathway", 
      "ANOVA", 
      "development", 
      "factors", 
      "improvement", 
      "need", 
      "data", 
      "implications", 
      "distinction", 
      "world", 
      "sight", 
      "filtered venous serum", 
      "gender-matched stable IHD patients ICD10", 
      "stable IHD patients ICD10", 
      "IHD patients ICD10", 
      "patients ICD10", 
      "I25.2", 
      "one-dimensional proton nuclear magnetic resonance (1H NMR) spectroscopy", 
      "concentration of acetylacetate", 
      "detected metabolic profile", 
      "possible longitudinal sight", 
      "longitudinal sight", 
      "Serum 1H NMR"
    ], 
    "name": "The Metabolic Profile of Stable Ischemic Heart Disease by Serum 1H NMR", 
    "pagination": "527-539", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107600618"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00723-018-1084-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00723-018-1084-0", 
      "https://app.dimensions.ai/details/publication/pub.1107600618"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_772.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00723-018-1084-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00723-018-1084-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00723-018-1084-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00723-018-1084-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00723-018-1084-0'


 

This table displays all metadata directly associated to this object as RDF triples.

277 TRIPLES      22 PREDICATES      148 URIs      131 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00723-018-1084-0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:03
4 anzsrc-for:0301
5 anzsrc-for:0306
6 schema:author Ne51f53b1f7b145e9af7f76d79c048dd9
7 schema:citation sg:pub.10.1007/s00394-014-0751-7
8 sg:pub.10.1038/nature06882
9 sg:pub.10.1038/srep30785
10 sg:pub.10.1038/srep30853
11 sg:pub.10.1186/1471-2105-12-366
12 sg:pub.10.1186/s13054-015-0896-7
13 schema:datePublished 2018-10-13
14 schema:datePublishedReg 2018-10-13
15 schema:description Ischemic heart disease (IHD) is the most common cause of death in the world. Metabolic profiling is an innovative and reliable new method to detect more sensitive biomarkers identifying altered health conditions specifically among the variety of patients with different risk factors. We evaluated the metabolic profile of filtered serum of stable IHD patients (ICD10 codes I20 and I25.2, ischemic heart disease without or with previous myocardial infarction respectively) using proton nuclear magnetic resonance spectroscopy (NMR). The filtered venous serum from age- and gender-matched stable IHD patients ICD10 coded I20 (n = 13), I25.2 (n = 6) and control individuals (n = 19) were analyzed using one-dimensional proton nuclear magnetic resonance (1H NMR) spectroscopy. These spectra were used for metabolic profiling and concentration calibration (Chenomx Inc.) followed by statistical analysis using one-way ANOVA and principal component analysis (PCA). Chemometrics analysis showed a significant distinction between the patients and control individuals. The stable IHD patients were exemplified by the increased concentration of acetylacetate, choline, betaine, formate, pyruvate and by the decreased concentration of alanine, creatine, glycine, histidine, lactate, proline, urea and other biomolecules. The major implications found in the serum of IHD patients are related to energy metabolism and potentially altered microbiome. PCA of 1H NMR detected serum metabolites exhibit a significant difference of stable IHD patients and control individuals. These data demonstrate that metabolomics approach may be useful for the early detection of stable IHD, for detection of synergistic pathways involved in the development of altered health conditions, and molecular understanding of particular health condition. The differences of the detected metabolic profile of ischemic patients with or without previous myocardial infarction appear to be minor. This relatively inexpensive, non-invasive and reproducible approach may be useful for the molecular understanding and early prevention of IHD, improvement of surveillance and therapy. The study emerges the need for future investigations using larger cohort and possible longitudinal sight.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N1e10bd4ac2ce4291900ce3da24fdea52
20 Na30774d1a29f442da64fee2ba455e4ed
21 sg:journal.1102112
22 schema:keywords ANOVA
23 I20
24 I25.2
25 ICD10
26 IHD patients
27 IHD patients ICD10
28 Serum 1H NMR
29 acetylacetate
30 age
31 alanine
32 analysis
33 approach
34 betaine
35 biomarkers
36 biomolecules
37 calibration
38 cause
39 chemometric analysis
40 choline
41 cohort
42 common cause
43 component analysis
44 concentration
45 concentration calibration
46 concentration of acetylacetate
47 conditions
48 control individuals
49 creatine
50 data
51 death
52 decreased concentration
53 detected metabolic profile
54 detection
55 development
56 differences
57 different risk factors
58 disease
59 distinction
60 early detection
61 early prevention
62 energy metabolism
63 factors
64 filtered venous serum
65 formate
66 future investigations
67 gender-matched stable IHD patients ICD10
68 glycine
69 health conditions
70 heart disease
71 histidine
72 implications
73 improvement
74 improvement of surveillance
75 individuals
76 infarction
77 investigation
78 ischemic heart disease
79 ischemic patients
80 lactate
81 large cohort
82 longitudinal sight
83 magnetic resonance spectroscopy
84 major implications
85 metabolic profile
86 metabolic profiling
87 metabolism
88 metabolites
89 metabolomics approach
90 method
91 microbiome
92 molecular understanding
93 myocardial infarction
94 need
95 new method
96 nuclear magnetic resonance spectroscopy
97 one-dimensional proton nuclear magnetic resonance (1H NMR) spectroscopy
98 one-way ANOVA
99 particular health condition
100 pathway
101 patients
102 patients ICD10
103 possible longitudinal sight
104 prevention
105 previous myocardial infarction
106 principal component analysis
107 profile
108 profiling
109 proline
110 proton nuclear magnetic resonance spectroscopy
111 reliable new method
112 reproducible approach
113 resonance spectroscopy
114 risk factors
115 sensitive biomarker
116 serum
117 serum metabolites
118 sight
119 significant differences
120 significant distinction
121 spectra
122 spectroscopy
123 stable IHD patients
124 stable IHD patients ICD10
125 stable ischemic heart disease
126 statistical analysis
127 study
128 surveillance
129 synergistic pathways
130 therapy
131 understanding
132 variety
133 variety of patients
134 venous serum
135 world
136 schema:name The Metabolic Profile of Stable Ischemic Heart Disease by Serum 1H NMR
137 schema:pagination 527-539
138 schema:productId N2e068e0efe9b44a3992cb1412800f4eb
139 Ne73eb16838634210883153e086b2dc7f
140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107600618
141 https://doi.org/10.1007/s00723-018-1084-0
142 schema:sdDatePublished 2021-12-01T19:42
143 schema:sdLicense https://scigraph.springernature.com/explorer/license/
144 schema:sdPublisher Nf7b540685fb24ffeb289f7e8c4d7955b
145 schema:url https://doi.org/10.1007/s00723-018-1084-0
146 sgo:license sg:explorer/license/
147 sgo:sdDataset articles
148 rdf:type schema:ScholarlyArticle
149 N00d05a425b5f406a8475b58900b795af rdf:first sg:person.0733543446.54
150 rdf:rest Na6b39877defe46f9ac04271eb25185cd
151 N18f4ed1f05764267990d1246b5843dd6 rdf:first sg:person.01371571163.89
152 rdf:rest N9a811ac6c6cc46b0880358f2a2113543
153 N1e10bd4ac2ce4291900ce3da24fdea52 schema:volumeNumber 50
154 rdf:type schema:PublicationVolume
155 N262337d00d0844d4bfc05669d760f1ba rdf:first sg:person.016501655355.72
156 rdf:rest N55faeb06efed4eafb3ec9bb9f5ae798d
157 N2e068e0efe9b44a3992cb1412800f4eb schema:name doi
158 schema:value 10.1007/s00723-018-1084-0
159 rdf:type schema:PropertyValue
160 N55faeb06efed4eafb3ec9bb9f5ae798d rdf:first sg:person.01112544071.19
161 rdf:rest N00d05a425b5f406a8475b58900b795af
162 N6165571ec29942eb8dfb2b7c183afe65 rdf:first sg:person.0647345040.05
163 rdf:rest rdf:nil
164 N9a811ac6c6cc46b0880358f2a2113543 rdf:first sg:person.01017342017.49
165 rdf:rest N6165571ec29942eb8dfb2b7c183afe65
166 Na30774d1a29f442da64fee2ba455e4ed schema:issueNumber 4
167 rdf:type schema:PublicationIssue
168 Na6b39877defe46f9ac04271eb25185cd rdf:first sg:person.010244241655.52
169 rdf:rest Nd51197cd2d4c4394882490c6664b6496
170 Nd51197cd2d4c4394882490c6664b6496 rdf:first sg:person.01024615232.29
171 rdf:rest N18f4ed1f05764267990d1246b5843dd6
172 Ne51f53b1f7b145e9af7f76d79c048dd9 rdf:first sg:person.01007122510.41
173 rdf:rest N262337d00d0844d4bfc05669d760f1ba
174 Ne73eb16838634210883153e086b2dc7f schema:name dimensions_id
175 schema:value pub.1107600618
176 rdf:type schema:PropertyValue
177 Nf7b540685fb24ffeb289f7e8c4d7955b schema:name Springer Nature - SN SciGraph project
178 rdf:type schema:Organization
179 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
180 schema:name Physical Sciences
181 rdf:type schema:DefinedTerm
182 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
183 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
184 rdf:type schema:DefinedTerm
185 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
186 schema:name Chemical Sciences
187 rdf:type schema:DefinedTerm
188 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
189 schema:name Analytical Chemistry
190 rdf:type schema:DefinedTerm
191 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
192 schema:name Physical Chemistry (incl. Structural)
193 rdf:type schema:DefinedTerm
194 sg:grant.6576183 http://pending.schema.org/fundedItem sg:pub.10.1007/s00723-018-1084-0
195 rdf:type schema:MonetaryGrant
196 sg:journal.1102112 schema:issn 0937-9347
197 1613-7507
198 schema:name Applied Magnetic Resonance
199 schema:publisher Springer Nature
200 rdf:type schema:Periodical
201 sg:person.01007122510.41 schema:affiliation grid-institutes:grid.6988.f
202 schema:familyName Titma
203 schema:givenName Tiina
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007122510.41
205 rdf:type schema:Person
206 sg:person.01017342017.49 schema:affiliation grid-institutes:grid.6988.f
207 schema:familyName Tanner
208 schema:givenName Risto
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017342017.49
210 rdf:type schema:Person
211 sg:person.010244241655.52 schema:affiliation grid-institutes:grid.454953.a
212 schema:familyName Pikta
213 schema:givenName Marika
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244241655.52
215 rdf:type schema:Person
216 sg:person.01024615232.29 schema:affiliation grid-institutes:grid.454953.a
217 schema:familyName Zemtsovskaja
218 schema:givenName Galina
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024615232.29
220 rdf:type schema:Person
221 sg:person.01112544071.19 schema:affiliation grid-institutes:grid.6572.6
222 schema:familyName Ludwig
223 schema:givenName Christian
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112544071.19
225 rdf:type schema:Person
226 sg:person.01371571163.89 schema:affiliation grid-institutes:grid.454953.a
227 schema:familyName Viigimaa
228 schema:givenName Margus
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371571163.89
230 rdf:type schema:Person
231 sg:person.016501655355.72 schema:affiliation grid-institutes:grid.6988.f
232 schema:familyName Shin
233 schema:givenName Min-Ji
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016501655355.72
235 rdf:type schema:Person
236 sg:person.0647345040.05 schema:affiliation grid-institutes:grid.7372.1
237 schema:familyName Samoson
238 schema:givenName Ago
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647345040.05
240 rdf:type schema:Person
241 sg:person.0733543446.54 schema:affiliation grid-institutes:grid.6572.6
242 schema:familyName Günther
243 schema:givenName Ulrich L.
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733543446.54
245 rdf:type schema:Person
246 sg:pub.10.1007/s00394-014-0751-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035184286
247 https://doi.org/10.1007/s00394-014-0751-7
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/nature06882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002778922
250 https://doi.org/10.1038/nature06882
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/srep30785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008934411
253 https://doi.org/10.1038/srep30785
254 rdf:type schema:CreativeWork
255 sg:pub.10.1038/srep30853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000071132
256 https://doi.org/10.1038/srep30853
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/1471-2105-12-366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016369639
259 https://doi.org/10.1186/1471-2105-12-366
260 rdf:type schema:CreativeWork
261 sg:pub.10.1186/s13054-015-0896-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038363295
262 https://doi.org/10.1186/s13054-015-0896-7
263 rdf:type schema:CreativeWork
264 grid-institutes:grid.454953.a schema:alternateName North Estonia Medical Centre, J. Sütiste tee 19, 13419, Tallinn, Estonia
265 schema:name Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 15A, 12618, Tallinn, Estonia
266 North Estonia Medical Centre, J. Sütiste tee 19, 13419, Tallinn, Estonia
267 rdf:type schema:Organization
268 grid-institutes:grid.6572.6 schema:alternateName Institute of Cancer and Genomic Sciences, University of Birmingham, B15 2TT, Birmingham, UK
269 schema:name Institute of Cancer and Genomic Sciences, University of Birmingham, B15 2TT, Birmingham, UK
270 rdf:type schema:Organization
271 grid-institutes:grid.6988.f schema:alternateName Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 15A, 12618, Tallinn, Estonia
272 schema:name Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 15A, 12618, Tallinn, Estonia
273 rdf:type schema:Organization
274 grid-institutes:grid.7372.1 schema:alternateName Department of Physics, University of Warwick, CV4 7AL, Coventry, UK
275 schema:name Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Akadeemia tee 15A, 12618, Tallinn, Estonia
276 Department of Physics, University of Warwick, CV4 7AL, Coventry, UK
277 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...