An Improved Calibration Framework for Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Zhenzhou Wu, Jianbing Zhu, Yan Chang, Yajie Xu, Xiaodong Yang

ABSTRACT

The image quality of iterative self-consistent parallel imaging reconstruction (SPIRiT) algorithm highly depends on the accuracy of linear coefficients which can be easily influenced by k-space noise. In this study, an improved calibration framework for SPIRiT is presented to reduce noise-induced errors and to adaptively generate optimal linear weighting coefficients. Specifically, the auto-calibration signals (ACS) are first mapped to a high-dimensional feature space through a polynomial mapping, and the optimal coefficients are adaptively obtained in this new feature space with discrepancy-based Tikhonov regularization and then truncated for SPIRiT reconstruction. Phantom and in vivo brain reconstruction were, respectively, performed and this calibration framework was mainly evaluated in Cartesian k-space-based SPIRiT reconstruction. In both phantom and in vivo reconstructions, noise-induced errors can be reduced by polynomial mapping and optimal regularization parameter, which improves the accuracy of linear coefficients. Both qualitative and quantitative results demonstrated that the proposed calibration framework resulted in better image quality without loss of resolution compared with the conventional calibration at different acceleration factors. The proposed calibration framework can effectively improve SPIRiT image quality. More... »

PAGES

1-18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00723-018-1036-8

DOI

http://dx.doi.org/10.1007/s00723-018-1036-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105779176


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Suzhou Institute of Biomedical Engineering and Technology", 
          "id": "https://www.grid.ac/institutes/grid.458504.8", 
          "name": [
            "Medical Imaging Division, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Zhenzhou", 
        "id": "sg:person.012050031406.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012050031406.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Medical University", 
          "id": "https://www.grid.ac/institutes/grid.89957.3a", 
          "name": [
            "Medical Imaging Department, Suzhou Hospital Affiliated to Nanjing Medical University, 215153, Suzhou, Jiangsu, China", 
            "Medical Imaging Department, Suzhou Science and Technology Town Hospital, 215153, Suzhou, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Jianbing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Suzhou Institute of Biomedical Engineering and Technology", 
          "id": "https://www.grid.ac/institutes/grid.458504.8", 
          "name": [
            "Medical Imaging Division, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Yan", 
        "id": "sg:person.011367507177.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011367507177.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Suzhou Institute of Biomedical Engineering and Technology", 
          "id": "https://www.grid.ac/institutes/grid.458504.8", 
          "name": [
            "Medical Imaging Division, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Yajie", 
        "id": "sg:person.016025650071.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025650071.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Suzhou Institute of Biomedical Engineering and Technology", 
          "id": "https://www.grid.ac/institutes/grid.458504.8", 
          "name": [
            "Medical Imaging Division, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xiaodong", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.20285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002572579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.23279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005424151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008973118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2009.05.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012287979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012449961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015043328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015043328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910380414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018509237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019070610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.23083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022897096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023486274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026386959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029323697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2010.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030625609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031999051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037838340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040239722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040909232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040909232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051002149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2015.2483539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061530020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tci.2016.2601296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061548789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2012.2188039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/ipi.2010.4.223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071739014"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "The image quality of iterative self-consistent parallel imaging reconstruction (SPIRiT) algorithm highly depends on the accuracy of linear coefficients which can be easily influenced by k-space noise. In this study, an improved calibration framework for SPIRiT is presented to reduce noise-induced errors and to adaptively generate optimal linear weighting coefficients. Specifically, the auto-calibration signals (ACS) are first mapped to a high-dimensional feature space through a polynomial mapping, and the optimal coefficients are adaptively obtained in this new feature space with discrepancy-based Tikhonov regularization and then truncated for SPIRiT reconstruction. Phantom and in vivo brain reconstruction were, respectively, performed and this calibration framework was mainly evaluated in Cartesian k-space-based SPIRiT reconstruction. In both phantom and in vivo reconstructions, noise-induced errors can be reduced by polynomial mapping and optimal regularization parameter, which improves the accuracy of linear coefficients. Both qualitative and quantitative results demonstrated that the proposed calibration framework resulted in better image quality without loss of resolution compared with the conventional calibration at different acceleration factors. The proposed calibration framework can effectively improve SPIRiT image quality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00723-018-1036-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1102112", 
        "issn": [
          "0937-9347", 
          "1613-7507"
        ], 
        "name": "Applied Magnetic Resonance", 
        "type": "Periodical"
      }
    ], 
    "name": "An Improved Calibration Framework for Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT)", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e9122f04b7b6832b6a6caa637a67fd76cc6935ec519bb1491a541b1861394a23"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00723-018-1036-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105779176"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00723-018-1036-8", 
      "https://app.dimensions.ai/details/publication/pub.1105779176"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000539.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00723-018-1036-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00723-018-1036-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00723-018-1036-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00723-018-1036-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00723-018-1036-8'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      47 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00723-018-1036-8 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author N538c14d2f09640eda0edf62032b0c6f5
4 schema:citation https://doi.org/10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s
5 https://doi.org/10.1002/jmri.20620
6 https://doi.org/10.1002/mrm.10171
7 https://doi.org/10.1002/mrm.10718
8 https://doi.org/10.1002/mrm.1241
9 https://doi.org/10.1002/mrm.1910380414
10 https://doi.org/10.1002/mrm.20285
11 https://doi.org/10.1002/mrm.20601
12 https://doi.org/10.1002/mrm.21391
13 https://doi.org/10.1002/mrm.22428
14 https://doi.org/10.1002/mrm.23083
15 https://doi.org/10.1002/mrm.23279
16 https://doi.org/10.1002/mrm.24344
17 https://doi.org/10.1002/mrm.25240
18 https://doi.org/10.1002/mrm.25290
19 https://doi.org/10.1002/mrm.26199
20 https://doi.org/10.1016/j.jmr.2010.01.001
21 https://doi.org/10.1016/j.mri.2009.05.047
22 https://doi.org/10.1109/tbme.2015.2483539
23 https://doi.org/10.1109/tci.2016.2601296
24 https://doi.org/10.1109/tmi.2012.2188039
25 https://doi.org/10.3934/ipi.2010.4.223
26 schema:datePublished 2019-03
27 schema:datePublishedReg 2019-03-01
28 schema:description The image quality of iterative self-consistent parallel imaging reconstruction (SPIRiT) algorithm highly depends on the accuracy of linear coefficients which can be easily influenced by k-space noise. In this study, an improved calibration framework for SPIRiT is presented to reduce noise-induced errors and to adaptively generate optimal linear weighting coefficients. Specifically, the auto-calibration signals (ACS) are first mapped to a high-dimensional feature space through a polynomial mapping, and the optimal coefficients are adaptively obtained in this new feature space with discrepancy-based Tikhonov regularization and then truncated for SPIRiT reconstruction. Phantom and in vivo brain reconstruction were, respectively, performed and this calibration framework was mainly evaluated in Cartesian k-space-based SPIRiT reconstruction. In both phantom and in vivo reconstructions, noise-induced errors can be reduced by polynomial mapping and optimal regularization parameter, which improves the accuracy of linear coefficients. Both qualitative and quantitative results demonstrated that the proposed calibration framework resulted in better image quality without loss of resolution compared with the conventional calibration at different acceleration factors. The proposed calibration framework can effectively improve SPIRiT image quality.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf sg:journal.1102112
33 schema:name An Improved Calibration Framework for Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT)
34 schema:pagination 1-18
35 schema:productId N4d2d2203de7b4ade95477c8a5a626e71
36 N9940148dbc1f4b06b64864faf3907c5d
37 Nf336f60ca8ff47f4ac497e7b6e3cd748
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105779176
39 https://doi.org/10.1007/s00723-018-1036-8
40 schema:sdDatePublished 2019-04-10T19:14
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N51fb15d8836045a88c74606f9885f3c9
43 schema:url http://link.springer.com/10.1007%2Fs00723-018-1036-8
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N4d2d2203de7b4ade95477c8a5a626e71 schema:name readcube_id
48 schema:value e9122f04b7b6832b6a6caa637a67fd76cc6935ec519bb1491a541b1861394a23
49 rdf:type schema:PropertyValue
50 N4d3e9e91979c4657ae2b71231199c5e7 rdf:first Nc235a210cc4d410eb40da75d56337557
51 rdf:rest rdf:nil
52 N51fb15d8836045a88c74606f9885f3c9 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N538c14d2f09640eda0edf62032b0c6f5 rdf:first sg:person.012050031406.15
55 rdf:rest Ndbf177ccf5884014951f92ab98a428ce
56 N59e46065629a4e0aaef49e2fc5830fa3 rdf:first sg:person.016025650071.16
57 rdf:rest N4d3e9e91979c4657ae2b71231199c5e7
58 N6e1076f674a54e4ebb14a708a6f47345 rdf:first sg:person.011367507177.00
59 rdf:rest N59e46065629a4e0aaef49e2fc5830fa3
60 N9940148dbc1f4b06b64864faf3907c5d schema:name doi
61 schema:value 10.1007/s00723-018-1036-8
62 rdf:type schema:PropertyValue
63 Nc235a210cc4d410eb40da75d56337557 schema:affiliation https://www.grid.ac/institutes/grid.458504.8
64 schema:familyName Yang
65 schema:givenName Xiaodong
66 rdf:type schema:Person
67 Ndbf177ccf5884014951f92ab98a428ce rdf:first Ne019e7e0ad684ca38fba506b2033079d
68 rdf:rest N6e1076f674a54e4ebb14a708a6f47345
69 Ne019e7e0ad684ca38fba506b2033079d schema:affiliation https://www.grid.ac/institutes/grid.89957.3a
70 schema:familyName Zhu
71 schema:givenName Jianbing
72 rdf:type schema:Person
73 Nf336f60ca8ff47f4ac497e7b6e3cd748 schema:name dimensions_id
74 schema:value pub.1105779176
75 rdf:type schema:PropertyValue
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
80 schema:name Biomedical Engineering
81 rdf:type schema:DefinedTerm
82 sg:journal.1102112 schema:issn 0937-9347
83 1613-7507
84 schema:name Applied Magnetic Resonance
85 rdf:type schema:Periodical
86 sg:person.011367507177.00 schema:affiliation https://www.grid.ac/institutes/grid.458504.8
87 schema:familyName Chang
88 schema:givenName Yan
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011367507177.00
90 rdf:type schema:Person
91 sg:person.012050031406.15 schema:affiliation https://www.grid.ac/institutes/grid.458504.8
92 schema:familyName Wu
93 schema:givenName Zhenzhou
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012050031406.15
95 rdf:type schema:Person
96 sg:person.016025650071.16 schema:affiliation https://www.grid.ac/institutes/grid.458504.8
97 schema:familyName Xu
98 schema:givenName Yajie
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025650071.16
100 rdf:type schema:Person
101 https://doi.org/10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1029323697
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1002/jmri.20620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026386959
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/mrm.10171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012449961
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/mrm.10718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023486274
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/mrm.1241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040239722
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/mrm.1910380414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018509237
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/mrm.20285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002572579
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/mrm.20601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015043328
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/mrm.21391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037838340
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/mrm.22428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040909232
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/mrm.23083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022897096
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/mrm.23279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005424151
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/mrm.24344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008973118
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/mrm.25240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031999051
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/mrm.25290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019070610
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/mrm.26199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051002149
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jmr.2010.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030625609
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.mri.2009.05.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012287979
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tbme.2015.2483539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061530020
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tci.2016.2601296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061548789
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tmi.2012.2188039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695880
142 rdf:type schema:CreativeWork
143 https://doi.org/10.3934/ipi.2010.4.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071739014
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.458504.8 schema:alternateName Suzhou Institute of Biomedical Engineering and Technology
146 schema:name Medical Imaging Division, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163, Suzhou, Jiangsu, China
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.89957.3a schema:alternateName Nanjing Medical University
149 schema:name Medical Imaging Department, Suzhou Hospital Affiliated to Nanjing Medical University, 215153, Suzhou, Jiangsu, China
150 Medical Imaging Department, Suzhou Science and Technology Town Hospital, 215153, Suzhou, Jiangsu, China
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...