A New Method for Predicting Capillary Pressure Curves Based on NMR Logging in Tight Sandstone Reservoirs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Mi Liu, Ranhong Xie, Hongjun Xu, Songtao Wu, Rukai Zhu, Zhiguo Mao

ABSTRACT

The accurate prediction of capillary pressure curves is of great significance for the evaluation of pore structure in tight sandstone reservoirs. In this paper, a hybrid model is proposed to predict the mercury injection capillary pressure (MICP) curve using multiple characteristic parameters of the nuclear magnetic resonance (NMR) transverse relaxation (T2) distribution; models based on the capillary pressure point and on the non-wetting phase saturation point are combined. Because of the high level of multicollinearity among the characteristic parameters of the NMR T2 distribution, the partial least squares method is used to solve the model coefficients. The leave-one-out cross-validation (LOOCV) method is used to determine the optimal combination of parameters of the hybrid model, i.e., the number of latent variables of the model based on the capillary pressure point, the number of latent variables of the model based on the non-wetting phase saturation point, and the location of the splicing point. The result of model self-testing, the result of the LOOCV, and the analysis of the generalization ability all indicate that the hybrid model has high accuracy and strong stability for MICP curves prediction. The prediction results in tight sandstone reservoirs further verify the effectiveness of this method. More... »

PAGES

1043-1058

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00723-018-1024-z

DOI

http://dx.doi.org/10.1007/s00723-018-1024-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104213936


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "China University of Petroleum, Beijing", 
          "id": "https://www.grid.ac/institutes/grid.411519.9", 
          "name": [
            "State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), 102249, Beijing, China", 
            "Key Laboratory of Earth Prospecting and Information Technology, China University of Petroleum (Beijing), 102249, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Mi", 
        "id": "sg:person.014142720315.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014142720315.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China University of Petroleum, Beijing", 
          "id": "https://www.grid.ac/institutes/grid.411519.9", 
          "name": [
            "State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), 102249, Beijing, China", 
            "Key Laboratory of Earth Prospecting and Information Technology, China University of Petroleum (Beijing), 102249, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Ranhong", 
        "id": "sg:person.012664676067.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012664676067.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "PetroChina Research Institute of Petroleum Exploration and Development, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Hongjun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "PetroChina Research Institute of Petroleum Exploration and Development, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Songtao", 
        "id": "sg:person.016661050306.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661050306.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "PetroChina Research Institute of Petroleum Exploration and Development, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Rukai", 
        "id": "sg:person.010300701607.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300701607.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "PetroChina Research Institute of Petroleum Exploration and Development, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mao", 
        "givenName": "Zhiguo", 
        "id": "sg:person.016310322416.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016310322416.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.petrol.2013.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008556992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petrol.2011.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013617605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2004.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013873499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-426653-7.50032-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027369040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petrol.2016.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028905190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petrol.2011.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034772040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gji/ggw130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059638153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/941152-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068962392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/942175-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068962432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00723-017-0924-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091146619", 
          "https://doi.org/10.1007/s00723-017-0924-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00723-017-0924-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091146619", 
          "https://doi.org/10.1007/s00723-017-0924-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "The accurate prediction of capillary pressure curves is of great significance for the evaluation of pore structure in tight sandstone reservoirs. In this paper, a hybrid model is proposed to predict the mercury injection capillary pressure (MICP) curve using multiple characteristic parameters of the nuclear magnetic resonance (NMR) transverse relaxation (T2) distribution; models based on the capillary pressure point and on the non-wetting phase saturation point are combined. Because of the high level of multicollinearity among the characteristic parameters of the NMR T2 distribution, the partial least squares method is used to solve the model coefficients. The leave-one-out cross-validation (LOOCV) method is used to determine the optimal combination of parameters of the hybrid model, i.e., the number of latent variables of the model based on the capillary pressure point, the number of latent variables of the model based on the non-wetting phase saturation point, and the location of the splicing point. The result of model self-testing, the result of the LOOCV, and the analysis of the generalization ability all indicate that the hybrid model has high accuracy and strong stability for MICP curves prediction. The prediction results in tight sandstone reservoirs further verify the effectiveness of this method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00723-018-1024-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1102112", 
        "issn": [
          "0937-9347", 
          "1613-7507"
        ], 
        "name": "Applied Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "A New Method for Predicting Capillary Pressure Curves Based on NMR Logging in Tight Sandstone Reservoirs", 
    "pagination": "1043-1058", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3dd418624c96522221b7056ad011bc5e5458e02d85d1bb2035bf3abe22285d3c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00723-018-1024-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104213936"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00723-018-1024-z", 
      "https://app.dimensions.ai/details/publication/pub.1104213936"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000517.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00723-018-1024-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00723-018-1024-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00723-018-1024-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00723-018-1024-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00723-018-1024-z'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00723-018-1024-z schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nd118b766931f47fcbb4824743c53c6f0
4 schema:citation sg:pub.10.1007/s00723-017-0924-7
5 https://doi.org/10.1016/b978-0-12-426653-7.50032-6
6 https://doi.org/10.1016/j.chemolab.2004.12.011
7 https://doi.org/10.1016/j.petrol.2011.12.014
8 https://doi.org/10.1016/j.petrol.2011.12.025
9 https://doi.org/10.1016/j.petrol.2013.10.010
10 https://doi.org/10.1016/j.petrol.2016.06.002
11 https://doi.org/10.1093/gji/ggw130
12 https://doi.org/10.2118/941152-g
13 https://doi.org/10.2118/942175-g
14 schema:datePublished 2018-10
15 schema:datePublishedReg 2018-10-01
16 schema:description The accurate prediction of capillary pressure curves is of great significance for the evaluation of pore structure in tight sandstone reservoirs. In this paper, a hybrid model is proposed to predict the mercury injection capillary pressure (MICP) curve using multiple characteristic parameters of the nuclear magnetic resonance (NMR) transverse relaxation (T2) distribution; models based on the capillary pressure point and on the non-wetting phase saturation point are combined. Because of the high level of multicollinearity among the characteristic parameters of the NMR T2 distribution, the partial least squares method is used to solve the model coefficients. The leave-one-out cross-validation (LOOCV) method is used to determine the optimal combination of parameters of the hybrid model, i.e., the number of latent variables of the model based on the capillary pressure point, the number of latent variables of the model based on the non-wetting phase saturation point, and the location of the splicing point. The result of model self-testing, the result of the LOOCV, and the analysis of the generalization ability all indicate that the hybrid model has high accuracy and strong stability for MICP curves prediction. The prediction results in tight sandstone reservoirs further verify the effectiveness of this method.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N293729de2bbc41409064a67619bd984d
21 Ne9483406fa4d42d083ba9295312dfdeb
22 sg:journal.1102112
23 schema:name A New Method for Predicting Capillary Pressure Curves Based on NMR Logging in Tight Sandstone Reservoirs
24 schema:pagination 1043-1058
25 schema:productId N0eb1bf784f814ce4a123bfb108b1606e
26 N6ae98492e03c4daba21b8552cf883d1e
27 Na82da22cc4c947c9aba375c82365ec8c
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104213936
29 https://doi.org/10.1007/s00723-018-1024-z
30 schema:sdDatePublished 2019-04-10T15:02
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N0067de0b495243a699a7a6f6dc4f3997
33 schema:url http://link.springer.com/10.1007%2Fs00723-018-1024-z
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0067de0b495243a699a7a6f6dc4f3997 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N0eb1bf784f814ce4a123bfb108b1606e schema:name doi
40 schema:value 10.1007/s00723-018-1024-z
41 rdf:type schema:PropertyValue
42 N293729de2bbc41409064a67619bd984d schema:issueNumber 10
43 rdf:type schema:PublicationIssue
44 N2993bbacc08a4be7ace06d8e0ffa721c rdf:first sg:person.016661050306.64
45 rdf:rest N8cc322d50f4649b6ac4f3becb36ee636
46 N2d3a97a8a5154dc2b81bc3a6d8bb3c01 schema:name PetroChina Research Institute of Petroleum Exploration and Development, 100083, Beijing, China
47 rdf:type schema:Organization
48 N6ae98492e03c4daba21b8552cf883d1e schema:name dimensions_id
49 schema:value pub.1104213936
50 rdf:type schema:PropertyValue
51 N739d11b1a9ea4da4a6d3924c418f73ba rdf:first sg:person.012664676067.94
52 rdf:rest N970f60f6dec045fdbca7744b3228271c
53 N74d7bb8ce9724a979455ed9067643dfd rdf:first sg:person.016310322416.63
54 rdf:rest rdf:nil
55 N889045607a074ca4aa2dc5999c93c330 schema:affiliation N97d118f55035428eacd2228af148d4c2
56 schema:familyName Xu
57 schema:givenName Hongjun
58 rdf:type schema:Person
59 N8cc322d50f4649b6ac4f3becb36ee636 rdf:first sg:person.010300701607.83
60 rdf:rest N74d7bb8ce9724a979455ed9067643dfd
61 N970f60f6dec045fdbca7744b3228271c rdf:first N889045607a074ca4aa2dc5999c93c330
62 rdf:rest N2993bbacc08a4be7ace06d8e0ffa721c
63 N97d118f55035428eacd2228af148d4c2 schema:name PetroChina Research Institute of Petroleum Exploration and Development, 100083, Beijing, China
64 rdf:type schema:Organization
65 Na82da22cc4c947c9aba375c82365ec8c schema:name readcube_id
66 schema:value 3dd418624c96522221b7056ad011bc5e5458e02d85d1bb2035bf3abe22285d3c
67 rdf:type schema:PropertyValue
68 Nb1a893807ac04d8d90a3396f6161a81f schema:name PetroChina Research Institute of Petroleum Exploration and Development, 100083, Beijing, China
69 rdf:type schema:Organization
70 Nd118b766931f47fcbb4824743c53c6f0 rdf:first sg:person.014142720315.81
71 rdf:rest N739d11b1a9ea4da4a6d3924c418f73ba
72 Ne9483406fa4d42d083ba9295312dfdeb schema:volumeNumber 49
73 rdf:type schema:PublicationVolume
74 Nf9276be44e1b47f9822a35fe752e00f9 schema:name PetroChina Research Institute of Petroleum Exploration and Development, 100083, Beijing, China
75 rdf:type schema:Organization
76 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
80 schema:name Other Physical Sciences
81 rdf:type schema:DefinedTerm
82 sg:journal.1102112 schema:issn 0937-9347
83 1613-7507
84 schema:name Applied Magnetic Resonance
85 rdf:type schema:Periodical
86 sg:person.010300701607.83 schema:affiliation N2d3a97a8a5154dc2b81bc3a6d8bb3c01
87 schema:familyName Zhu
88 schema:givenName Rukai
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300701607.83
90 rdf:type schema:Person
91 sg:person.012664676067.94 schema:affiliation https://www.grid.ac/institutes/grid.411519.9
92 schema:familyName Xie
93 schema:givenName Ranhong
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012664676067.94
95 rdf:type schema:Person
96 sg:person.014142720315.81 schema:affiliation https://www.grid.ac/institutes/grid.411519.9
97 schema:familyName Liu
98 schema:givenName Mi
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014142720315.81
100 rdf:type schema:Person
101 sg:person.016310322416.63 schema:affiliation Nb1a893807ac04d8d90a3396f6161a81f
102 schema:familyName Mao
103 schema:givenName Zhiguo
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016310322416.63
105 rdf:type schema:Person
106 sg:person.016661050306.64 schema:affiliation Nf9276be44e1b47f9822a35fe752e00f9
107 schema:familyName Wu
108 schema:givenName Songtao
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661050306.64
110 rdf:type schema:Person
111 sg:pub.10.1007/s00723-017-0924-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091146619
112 https://doi.org/10.1007/s00723-017-0924-7
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/b978-0-12-426653-7.50032-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027369040
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.chemolab.2004.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013873499
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.petrol.2011.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034772040
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.petrol.2011.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013617605
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.petrol.2013.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008556992
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.petrol.2016.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028905190
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1093/gji/ggw130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059638153
127 rdf:type schema:CreativeWork
128 https://doi.org/10.2118/941152-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1068962392
129 rdf:type schema:CreativeWork
130 https://doi.org/10.2118/942175-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1068962432
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.411519.9 schema:alternateName China University of Petroleum, Beijing
133 schema:name Key Laboratory of Earth Prospecting and Information Technology, China University of Petroleum (Beijing), 102249, Beijing, China
134 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), 102249, Beijing, China
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...