Pulse EPR Study of Gas Adsorption in Cu2+-Doped Metal–Organic Framework [Zn2(1,4-bdc)2(dabco)] View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11-16

AUTHORS

A. S. Poryvaev, A. M. Sheveleva, P. A. Demakov, S. S. Arzumanov, A. G. Stepanov, D. N. Dybtsev, M. V. Fedin

ABSTRACT

Gas separation and storage are the hot topics for addressing current challenges in energy and environmental science, including the air pollution problems and alternative fuels, and metal–organic frameworks (MOFs) have a great potential in these fields. Herewith, we present the electron paramagnetic resonance (EPR) study of the adsorption of several gases (hydrogen D2, methane 13CH4 and CD4, and carbon dioxide 13CO2) in Cu2+-doped MOF [Zn2(1,4-bdc)2(dabco)]. The obtained compound of composition [Zn1.993Cu0.007(1,4-bdc)2(dabco)] is suitable for studying adsorption geometries at Cu2+ ions and in their closest environments using pulse EPR. In attempt to characterize D2, 13CH4, CD4, and 13CO2 adsorption sites, we applied echo-detected EPR along with hyperfine sublevel correlation spectroscopy and pulse electron-nuclear double resonance spectroscopy. Altogether, these methods demonstrated the preferred location of gas molecules in the framework being at least 6 Å away from the copper ions. In addition, EPR spectroscopy allowed determination of the proton environment of copper and confirmed its incorporation into the MOF lattice, which is hard to establish using other techniques. More... »

PAGES

255-264

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00723-017-0962-1

DOI

http://dx.doi.org/10.1007/s00723-017-0962-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092710837


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "International Tomography Center SB RAS, Institutskaya st. 3, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poryvaev", 
        "givenName": "A. S.", 
        "id": "sg:person.012262766520.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012262766520.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "International Tomography Center SB RAS, Institutskaya st. 3, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheveleva", 
        "givenName": "A. M.", 
        "id": "sg:person.01053337363.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053337363.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nikolaev Institute of Inorganic Chemistry, SB RAS, Lavrentiev av. 3, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia", 
            "Nikolaev Institute of Inorganic Chemistry, SB RAS, Lavrentiev av. 3, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Demakov", 
        "givenName": "P. A.", 
        "id": "sg:person.016025216133.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025216133.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis SB RAS, Lavrentiev av. 5, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418421.a", 
          "name": [
            "Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia", 
            "Boreskov Institute of Catalysis SB RAS, Lavrentiev av. 5, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arzumanov", 
        "givenName": "S. S.", 
        "id": "sg:person.07471543541.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07471543541.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis SB RAS, Lavrentiev av. 5, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418421.a", 
          "name": [
            "Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia", 
            "Boreskov Institute of Catalysis SB RAS, Lavrentiev av. 5, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stepanov", 
        "givenName": "A. G.", 
        "id": "sg:person.0732564065.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732564065.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nikolaev Institute of Inorganic Chemistry, SB RAS, Lavrentiev av. 3, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia", 
            "Nikolaev Institute of Inorganic Chemistry, SB RAS, Lavrentiev av. 3, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dybtsev", 
        "givenName": "D. N.", 
        "id": "sg:person.015551254415.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015551254415.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "International Tomography Center SB RAS, Institutskaya st. 3, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedin", 
        "givenName": "M. V.", 
        "id": "sg:person.01062002050.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062002050.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00775-003-0450-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075248672", 
          "https://doi.org/10.1007/s00775-003-0450-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00723-014-0518-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022807861", 
          "https://doi.org/10.1007/s00723-014-0518-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00775-007-0230-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014328652", 
          "https://doi.org/10.1007/s00775-007-0230-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11-16", 
    "datePublishedReg": "2017-11-16", 
    "description": "Gas separation and storage are the hot topics for addressing current challenges in energy and environmental science, including the air pollution problems and alternative fuels, and metal\u2013organic frameworks (MOFs) have a great potential in these fields. Herewith, we present the electron paramagnetic resonance (EPR) study of the adsorption of several gases (hydrogen D2, methane 13CH4 and CD4, and carbon dioxide 13CO2) in Cu2+-doped MOF [Zn2(1,4-bdc)2(dabco)]. The obtained compound of composition [Zn1.993Cu0.007(1,4-bdc)2(dabco)] is suitable for studying adsorption geometries at Cu2+ ions and in their closest environments using pulse EPR. In attempt to characterize D2, 13CH4, CD4, and 13CO2 adsorption sites, we applied echo-detected EPR along with hyperfine sublevel correlation spectroscopy and pulse electron-nuclear double resonance spectroscopy. Altogether, these methods demonstrated the preferred location of gas molecules in the framework being at least 6\u00a0\u00c5 away from the copper ions. In addition, EPR spectroscopy allowed determination of the proton environment of copper and confirmed its incorporation into the MOF lattice, which is hard to establish using other techniques.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00723-017-0962-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4896380", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1102112", 
        "issn": [
          "0937-9347", 
          "1613-7507"
        ], 
        "name": "Applied Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "keywords": [
      "metal-organic frameworks", 
      "electron-nuclear double resonance (ENDOR) spectroscopy", 
      "hyperfine sublevel correlation spectroscopy", 
      "compounds of composition", 
      "pulse EPR study", 
      "electron paramagnetic resonance study", 
      "double resonance spectroscopy", 
      "paramagnetic resonance studies", 
      "MOF lattice", 
      "gas separation", 
      "copper ions", 
      "adsorption sites", 
      "EPR spectroscopy", 
      "gas adsorption", 
      "gas molecules", 
      "echo-detected EPR", 
      "EPR studies", 
      "resonance spectroscopy", 
      "adsorption", 
      "correlation spectroscopy", 
      "Cu2", 
      "spectroscopy", 
      "resonance studies", 
      "pulse EPR", 
      "proton environment", 
      "EPR", 
      "ions", 
      "great potential", 
      "environmental science", 
      "close environment", 
      "alternative fuels", 
      "pollution problems", 
      "current challenges", 
      "copper", 
      "compounds", 
      "molecules", 
      "air pollution problems", 
      "separation", 
      "determination", 
      "gases", 
      "fuel", 
      "incorporation", 
      "composition", 
      "lattice", 
      "energy", 
      "storage", 
      "preferred location", 
      "potential", 
      "hot topic", 
      "addition", 
      "technique", 
      "method", 
      "environment", 
      "sites", 
      "D2", 
      "herewith", 
      "study", 
      "field", 
      "framework", 
      "science", 
      "challenges", 
      "attempt", 
      "topic", 
      "location", 
      "problem", 
      "CD4", 
      "sublevel correlation spectroscopy", 
      "pulse electron-nuclear double resonance spectroscopy"
    ], 
    "name": "Pulse EPR Study of Gas Adsorption in Cu2+-Doped Metal\u2013Organic Framework [Zn2(1,4-bdc)2(dabco)]", 
    "pagination": "255-264", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092710837"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00723-017-0962-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00723-017-0962-1", 
      "https://app.dimensions.ai/details/publication/pub.1092710837"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_745.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00723-017-0962-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00723-017-0962-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00723-017-0962-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00723-017-0962-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00723-017-0962-1'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      22 PREDICATES      97 URIs      85 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00723-017-0962-1 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:0306
4 schema:author Nf37c5426cd6f4d608cc503d226a97617
5 schema:citation sg:pub.10.1007/s00723-014-0518-6
6 sg:pub.10.1007/s00775-003-0450-y
7 sg:pub.10.1007/s00775-007-0230-1
8 schema:datePublished 2017-11-16
9 schema:datePublishedReg 2017-11-16
10 schema:description Gas separation and storage are the hot topics for addressing current challenges in energy and environmental science, including the air pollution problems and alternative fuels, and metal–organic frameworks (MOFs) have a great potential in these fields. Herewith, we present the electron paramagnetic resonance (EPR) study of the adsorption of several gases (hydrogen D2, methane 13CH4 and CD4, and carbon dioxide 13CO2) in Cu2+-doped MOF [Zn2(1,4-bdc)2(dabco)]. The obtained compound of composition [Zn1.993Cu0.007(1,4-bdc)2(dabco)] is suitable for studying adsorption geometries at Cu2+ ions and in their closest environments using pulse EPR. In attempt to characterize D2, 13CH4, CD4, and 13CO2 adsorption sites, we applied echo-detected EPR along with hyperfine sublevel correlation spectroscopy and pulse electron-nuclear double resonance spectroscopy. Altogether, these methods demonstrated the preferred location of gas molecules in the framework being at least 6 Å away from the copper ions. In addition, EPR spectroscopy allowed determination of the proton environment of copper and confirmed its incorporation into the MOF lattice, which is hard to establish using other techniques.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N12195b2d471a4ee3a40bf95bd8f6c4c5
15 N1b83c11f047949a2936574088c46080c
16 sg:journal.1102112
17 schema:keywords CD4
18 Cu2
19 D2
20 EPR
21 EPR spectroscopy
22 EPR studies
23 MOF lattice
24 addition
25 adsorption
26 adsorption sites
27 air pollution problems
28 alternative fuels
29 attempt
30 challenges
31 close environment
32 composition
33 compounds
34 compounds of composition
35 copper
36 copper ions
37 correlation spectroscopy
38 current challenges
39 determination
40 double resonance spectroscopy
41 echo-detected EPR
42 electron paramagnetic resonance study
43 electron-nuclear double resonance (ENDOR) spectroscopy
44 energy
45 environment
46 environmental science
47 field
48 framework
49 fuel
50 gas adsorption
51 gas molecules
52 gas separation
53 gases
54 great potential
55 herewith
56 hot topic
57 hyperfine sublevel correlation spectroscopy
58 incorporation
59 ions
60 lattice
61 location
62 metal-organic frameworks
63 method
64 molecules
65 paramagnetic resonance studies
66 pollution problems
67 potential
68 preferred location
69 problem
70 proton environment
71 pulse EPR
72 pulse EPR study
73 pulse electron-nuclear double resonance spectroscopy
74 resonance spectroscopy
75 resonance studies
76 science
77 separation
78 sites
79 spectroscopy
80 storage
81 study
82 sublevel correlation spectroscopy
83 technique
84 topic
85 schema:name Pulse EPR Study of Gas Adsorption in Cu2+-Doped Metal–Organic Framework [Zn2(1,4-bdc)2(dabco)]
86 schema:pagination 255-264
87 schema:productId N371fa62075d641dea005a1688b6f345f
88 Nd889ba6ed76d40d18bce6b54f5cfa488
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092710837
90 https://doi.org/10.1007/s00723-017-0962-1
91 schema:sdDatePublished 2022-01-01T18:44
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N72562986244b4844b81e1b2955756340
94 schema:url https://doi.org/10.1007/s00723-017-0962-1
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N12195b2d471a4ee3a40bf95bd8f6c4c5 schema:volumeNumber 49
99 rdf:type schema:PublicationVolume
100 N13331a2dd7b046ca92bcac2ce74526d4 rdf:first sg:person.016025216133.33
101 rdf:rest N8caa118cb9e6448096bf2961dfa92e02
102 N1b83c11f047949a2936574088c46080c schema:issueNumber 3
103 rdf:type schema:PublicationIssue
104 N371fa62075d641dea005a1688b6f345f schema:name doi
105 schema:value 10.1007/s00723-017-0962-1
106 rdf:type schema:PropertyValue
107 N38f11c354a4d4aa0bebbf4b6953f4ab2 rdf:first sg:person.01053337363.31
108 rdf:rest N13331a2dd7b046ca92bcac2ce74526d4
109 N5a16ea029585463e875dfa77237adcbc rdf:first sg:person.015551254415.70
110 rdf:rest Nb09a25cb4ba34eb0afacc78aa58ce312
111 N72562986244b4844b81e1b2955756340 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N8caa118cb9e6448096bf2961dfa92e02 rdf:first sg:person.07471543541.50
114 rdf:rest Nc6a2cdda1dbc4433a41326799258a8a4
115 Nb09a25cb4ba34eb0afacc78aa58ce312 rdf:first sg:person.01062002050.07
116 rdf:rest rdf:nil
117 Nc6a2cdda1dbc4433a41326799258a8a4 rdf:first sg:person.0732564065.02
118 rdf:rest N5a16ea029585463e875dfa77237adcbc
119 Nd889ba6ed76d40d18bce6b54f5cfa488 schema:name dimensions_id
120 schema:value pub.1092710837
121 rdf:type schema:PropertyValue
122 Nf37c5426cd6f4d608cc503d226a97617 rdf:first sg:person.012262766520.24
123 rdf:rest N38f11c354a4d4aa0bebbf4b6953f4ab2
124 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
125 schema:name Chemical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
128 schema:name Inorganic Chemistry
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
131 schema:name Physical Chemistry (incl. Structural)
132 rdf:type schema:DefinedTerm
133 sg:grant.4896380 http://pending.schema.org/fundedItem sg:pub.10.1007/s00723-017-0962-1
134 rdf:type schema:MonetaryGrant
135 sg:journal.1102112 schema:issn 0937-9347
136 1613-7507
137 schema:name Applied Magnetic Resonance
138 schema:publisher Springer Nature
139 rdf:type schema:Periodical
140 sg:person.01053337363.31 schema:affiliation grid-institutes:grid.4605.7
141 schema:familyName Sheveleva
142 schema:givenName A. M.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053337363.31
144 rdf:type schema:Person
145 sg:person.01062002050.07 schema:affiliation grid-institutes:grid.4605.7
146 schema:familyName Fedin
147 schema:givenName M. V.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062002050.07
149 rdf:type schema:Person
150 sg:person.012262766520.24 schema:affiliation grid-institutes:grid.4605.7
151 schema:familyName Poryvaev
152 schema:givenName A. S.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012262766520.24
154 rdf:type schema:Person
155 sg:person.015551254415.70 schema:affiliation grid-institutes:grid.415877.8
156 schema:familyName Dybtsev
157 schema:givenName D. N.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015551254415.70
159 rdf:type schema:Person
160 sg:person.016025216133.33 schema:affiliation grid-institutes:grid.415877.8
161 schema:familyName Demakov
162 schema:givenName P. A.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025216133.33
164 rdf:type schema:Person
165 sg:person.0732564065.02 schema:affiliation grid-institutes:grid.418421.a
166 schema:familyName Stepanov
167 schema:givenName A. G.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732564065.02
169 rdf:type schema:Person
170 sg:person.07471543541.50 schema:affiliation grid-institutes:grid.418421.a
171 schema:familyName Arzumanov
172 schema:givenName S. S.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07471543541.50
174 rdf:type schema:Person
175 sg:pub.10.1007/s00723-014-0518-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022807861
176 https://doi.org/10.1007/s00723-014-0518-6
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s00775-003-0450-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1075248672
179 https://doi.org/10.1007/s00775-003-0450-y
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s00775-007-0230-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014328652
182 https://doi.org/10.1007/s00775-007-0230-1
183 rdf:type schema:CreativeWork
184 grid-institutes:grid.415877.8 schema:alternateName Nikolaev Institute of Inorganic Chemistry, SB RAS, Lavrentiev av. 3, 630090, Novosibirsk, Russia
185 schema:name Nikolaev Institute of Inorganic Chemistry, SB RAS, Lavrentiev av. 3, 630090, Novosibirsk, Russia
186 Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia
187 rdf:type schema:Organization
188 grid-institutes:grid.418421.a schema:alternateName Boreskov Institute of Catalysis SB RAS, Lavrentiev av. 5, 630090, Novosibirsk, Russia
189 schema:name Boreskov Institute of Catalysis SB RAS, Lavrentiev av. 5, 630090, Novosibirsk, Russia
190 Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia
191 rdf:type schema:Organization
192 grid-institutes:grid.4605.7 schema:alternateName Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia
193 schema:name International Tomography Center SB RAS, Institutskaya st. 3, 630090, Novosibirsk, Russia
194 Novosibirsk State University, Pirogova st. 2, 630090, Novosibirsk, Russia
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...