X- and Q-Band Electron Spin Echo Study of Stochastic Molecular Librations of Spin Labels in Lipid Bilayers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-12-25

AUTHORS

N. P. Isaev, M. V. Fedin, S. A. Dzuba

ABSTRACT

Electron spin echo (ESE) of nitroxide spin labels allows detecting fast nanosecond stochastic restricted rotations (stochastic molecular librations), which is a common property of molecules in disordered media including biological systems. Under the typical experimental conditions, the anisotropic electron paramagnetic resonance (EPR) spectrum of a nitroxide is only partly excited by microwave pulses, which allows selecting an anisotropic contribution to the transverse spin relaxation by comparing echo decays at different spectral positions. On the other hand, for low-amplitude orientational motion, the excitation bandwidth is large enough to cover the range of spectral diffusion occurring during the echo formation. To verify that the two-pulse echo decay is indeed related to fast motions, the stimulated electron spin echo can be used. In addition, theory predicts an increase of the relaxation rates at higher microwave resonance frequency. To check this prediction, in the present work we performed a comparative study of ESE decays at microwave X- and Q-bands, for spin-labeled lipids in the gel phase of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer. A good agreement found between experimental data and computer simulation provides additional justification for the model of fast stochastic molecular librations. More... »

PAGES

133-142

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00723-012-0408-8

DOI

http://dx.doi.org/10.1007/s00723-012-0408-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033752698


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya 3, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya 3, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Isaev", 
        "givenName": "N. P.", 
        "id": "sg:person.0774417525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774417525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Tomography Center, Institutskaya 3a, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.419389.e", 
          "name": [
            "International Tomography Center, Institutskaya 3a, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedin", 
        "givenName": "M. V.", 
        "id": "sg:person.01062002050.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062002050.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya 3, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dzuba", 
        "givenName": "S. A.", 
        "id": "sg:person.0736311776.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736311776.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03166989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051794838", 
          "https://doi.org/10.1007/bf03166989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00249-010-0644-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009263471", 
          "https://doi.org/10.1007/s00249-010-0644-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03161875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038251631", 
          "https://doi.org/10.1007/bf03161875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03162452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027735574", 
          "https://doi.org/10.1007/bf03162452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03166223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014648333", 
          "https://doi.org/10.1007/bf03166223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00249-009-0512-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024120497", 
          "https://doi.org/10.1007/s00249-009-0512-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12-25", 
    "datePublishedReg": "2012-12-25", 
    "description": "Electron spin echo (ESE) of nitroxide spin labels allows detecting fast nanosecond stochastic restricted rotations (stochastic molecular librations), which is a common property of molecules in disordered media including biological systems. Under the typical experimental conditions, the anisotropic electron paramagnetic resonance (EPR) spectrum of a nitroxide is only partly excited by microwave pulses, which allows selecting an anisotropic contribution to the transverse spin relaxation by comparing echo decays at different spectral positions. On the other hand, for low-amplitude orientational motion, the excitation bandwidth is large enough to cover the range of spectral diffusion occurring during the echo formation. To verify that the two-pulse echo decay is indeed related to fast motions, the stimulated electron spin echo can be used. In addition, theory predicts an increase of the relaxation rates at higher microwave resonance frequency. To check this prediction, in the present work we performed a comparative study of ESE decays at microwave X- and Q-bands, for spin-labeled lipids in the gel phase of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer. A good agreement found between experimental data and computer simulation provides additional justification for the model of fast stochastic molecular librations.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00723-012-0408-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5337406", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1102112", 
        "issn": [
          "0937-9347", 
          "1613-7507"
        ], 
        "name": "Applied Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "electron spin echo", 
      "two-pulse echo decay", 
      "echo decay", 
      "transverse spin relaxation", 
      "typical experimental conditions", 
      "molecular librations", 
      "different spectral positions", 
      "microwave resonance frequency", 
      "spin relaxation", 
      "anisotropic contributions", 
      "microwave pulses", 
      "fast motion", 
      "spin echo", 
      "excitation bandwidth", 
      "echo formation", 
      "computer simulations", 
      "spin-echo studies", 
      "spin labels", 
      "Electron spin-echo studies", 
      "electron paramagnetic resonance spectra", 
      "paramagnetic resonance spectra", 
      "spectral diffusion", 
      "sn-glycero-3-phosphocholine bilayers", 
      "spectral position", 
      "nitroxide spin labels", 
      "relaxation rate", 
      "experimental data", 
      "orientational motion", 
      "microwave X", 
      "motion", 
      "resonance frequency", 
      "spin-labeled lipids", 
      "resonance spectra", 
      "good agreement", 
      "libration", 
      "echo studies", 
      "decay", 
      "biological systems", 
      "lipid bilayers", 
      "common property", 
      "bilayers", 
      "theory", 
      "additional justification", 
      "pulses", 
      "simulations", 
      "gel phase", 
      "present work", 
      "echoes", 
      "spectra", 
      "relaxation", 
      "experimental conditions", 
      "model", 
      "prediction", 
      "band", 
      "properties", 
      "rotation", 
      "bandwidth", 
      "agreement", 
      "diffusion", 
      "system", 
      "nitroxides", 
      "justification", 
      "phase", 
      "molecules", 
      "frequency", 
      "range", 
      "work", 
      "comparative study", 
      "conditions", 
      "position", 
      "contribution", 
      "medium", 
      "formation", 
      "data", 
      "hand", 
      "labels", 
      "addition", 
      "study", 
      "increase", 
      "rate", 
      "lipids"
    ], 
    "name": "X- and Q-Band Electron Spin Echo Study of Stochastic Molecular Librations of Spin Labels in Lipid Bilayers", 
    "pagination": "133-142", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033752698"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00723-012-0408-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00723-012-0408-8", 
      "https://app.dimensions.ai/details/publication/pub.1033752698"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_572.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00723-012-0408-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00723-012-0408-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00723-012-0408-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00723-012-0408-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00723-012-0408-8'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      22 PREDICATES      112 URIs      98 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00723-012-0408-8 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N33a7082bc429471ba2a04a3350a4a14f
4 schema:citation sg:pub.10.1007/bf03161875
5 sg:pub.10.1007/bf03162452
6 sg:pub.10.1007/bf03166223
7 sg:pub.10.1007/bf03166989
8 sg:pub.10.1007/s00249-009-0512-3
9 sg:pub.10.1007/s00249-010-0644-5
10 schema:datePublished 2012-12-25
11 schema:datePublishedReg 2012-12-25
12 schema:description Electron spin echo (ESE) of nitroxide spin labels allows detecting fast nanosecond stochastic restricted rotations (stochastic molecular librations), which is a common property of molecules in disordered media including biological systems. Under the typical experimental conditions, the anisotropic electron paramagnetic resonance (EPR) spectrum of a nitroxide is only partly excited by microwave pulses, which allows selecting an anisotropic contribution to the transverse spin relaxation by comparing echo decays at different spectral positions. On the other hand, for low-amplitude orientational motion, the excitation bandwidth is large enough to cover the range of spectral diffusion occurring during the echo formation. To verify that the two-pulse echo decay is indeed related to fast motions, the stimulated electron spin echo can be used. In addition, theory predicts an increase of the relaxation rates at higher microwave resonance frequency. To check this prediction, in the present work we performed a comparative study of ESE decays at microwave X- and Q-bands, for spin-labeled lipids in the gel phase of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer. A good agreement found between experimental data and computer simulation provides additional justification for the model of fast stochastic molecular librations.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Naac8755fa01941dfb4dcb7280ebb31f3
17 Nf68b21ae9b4e492faeb7339a7479de8d
18 sg:journal.1102112
19 schema:keywords Electron spin-echo studies
20 addition
21 additional justification
22 agreement
23 anisotropic contributions
24 band
25 bandwidth
26 bilayers
27 biological systems
28 common property
29 comparative study
30 computer simulations
31 conditions
32 contribution
33 data
34 decay
35 different spectral positions
36 diffusion
37 echo decay
38 echo formation
39 echo studies
40 echoes
41 electron paramagnetic resonance spectra
42 electron spin echo
43 excitation bandwidth
44 experimental conditions
45 experimental data
46 fast motion
47 formation
48 frequency
49 gel phase
50 good agreement
51 hand
52 increase
53 justification
54 labels
55 libration
56 lipid bilayers
57 lipids
58 medium
59 microwave X
60 microwave pulses
61 microwave resonance frequency
62 model
63 molecular librations
64 molecules
65 motion
66 nitroxide spin labels
67 nitroxides
68 orientational motion
69 paramagnetic resonance spectra
70 phase
71 position
72 prediction
73 present work
74 properties
75 pulses
76 range
77 rate
78 relaxation
79 relaxation rate
80 resonance frequency
81 resonance spectra
82 rotation
83 simulations
84 sn-glycero-3-phosphocholine bilayers
85 spectra
86 spectral diffusion
87 spectral position
88 spin echo
89 spin labels
90 spin relaxation
91 spin-echo studies
92 spin-labeled lipids
93 study
94 system
95 theory
96 transverse spin relaxation
97 two-pulse echo decay
98 typical experimental conditions
99 work
100 schema:name X- and Q-Band Electron Spin Echo Study of Stochastic Molecular Librations of Spin Labels in Lipid Bilayers
101 schema:pagination 133-142
102 schema:productId Nc7ddbdab2b7a4103a6549e1e4ad6cd93
103 Nfa84bf3522f24aab81df3222299f8d28
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033752698
105 https://doi.org/10.1007/s00723-012-0408-8
106 schema:sdDatePublished 2022-05-20T07:28
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N1bcb8b01ead1481fad1b858285bf2d07
109 schema:url https://doi.org/10.1007/s00723-012-0408-8
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N1bcb8b01ead1481fad1b858285bf2d07 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N33a7082bc429471ba2a04a3350a4a14f rdf:first sg:person.0774417525.33
116 rdf:rest N5cb08882867a4ba4bb338bb910c1c49d
117 N5cb08882867a4ba4bb338bb910c1c49d rdf:first sg:person.01062002050.07
118 rdf:rest N9c202c4635d3402fb36d3ddf32d8ede4
119 N9c202c4635d3402fb36d3ddf32d8ede4 rdf:first sg:person.0736311776.12
120 rdf:rest rdf:nil
121 Naac8755fa01941dfb4dcb7280ebb31f3 schema:issueNumber 1-2
122 rdf:type schema:PublicationIssue
123 Nc7ddbdab2b7a4103a6549e1e4ad6cd93 schema:name dimensions_id
124 schema:value pub.1033752698
125 rdf:type schema:PropertyValue
126 Nf68b21ae9b4e492faeb7339a7479de8d schema:volumeNumber 44
127 rdf:type schema:PublicationVolume
128 Nfa84bf3522f24aab81df3222299f8d28 schema:name doi
129 schema:value 10.1007/s00723-012-0408-8
130 rdf:type schema:PropertyValue
131 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
132 schema:name Physical Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
135 schema:name Other Physical Sciences
136 rdf:type schema:DefinedTerm
137 sg:grant.5337406 http://pending.schema.org/fundedItem sg:pub.10.1007/s00723-012-0408-8
138 rdf:type schema:MonetaryGrant
139 sg:journal.1102112 schema:issn 0937-9347
140 1613-7507
141 schema:name Applied Magnetic Resonance
142 schema:publisher Springer Nature
143 rdf:type schema:Periodical
144 sg:person.01062002050.07 schema:affiliation grid-institutes:grid.419389.e
145 schema:familyName Fedin
146 schema:givenName M. V.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062002050.07
148 rdf:type schema:Person
149 sg:person.0736311776.12 schema:affiliation grid-institutes:grid.4605.7
150 schema:familyName Dzuba
151 schema:givenName S. A.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736311776.12
153 rdf:type schema:Person
154 sg:person.0774417525.33 schema:affiliation grid-institutes:grid.415877.8
155 schema:familyName Isaev
156 schema:givenName N. P.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774417525.33
158 rdf:type schema:Person
159 sg:pub.10.1007/bf03161875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038251631
160 https://doi.org/10.1007/bf03161875
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/bf03162452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027735574
163 https://doi.org/10.1007/bf03162452
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/bf03166223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014648333
166 https://doi.org/10.1007/bf03166223
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/bf03166989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051794838
169 https://doi.org/10.1007/bf03166989
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00249-009-0512-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024120497
172 https://doi.org/10.1007/s00249-009-0512-3
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00249-010-0644-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009263471
175 https://doi.org/10.1007/s00249-010-0644-5
176 rdf:type schema:CreativeWork
177 grid-institutes:grid.415877.8 schema:alternateName Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya 3, 630090, Novosibirsk, Russia
178 schema:name Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya 3, 630090, Novosibirsk, Russia
179 rdf:type schema:Organization
180 grid-institutes:grid.419389.e schema:alternateName International Tomography Center, Institutskaya 3a, 630090, Novosibirsk, Russia
181 schema:name International Tomography Center, Institutskaya 3a, 630090, Novosibirsk, Russia
182 rdf:type schema:Organization
183 grid-institutes:grid.4605.7 schema:alternateName Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
184 schema:name Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya 3, 630090, Novosibirsk, Russia
185 Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...