Mobile Low-Field 1H NMR Spectroscopy Desktop Analysis of Biodiesel Production View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-02

AUTHORS

Yamila Garro Linck, M. H. M. Killner, E. Danieli, B. Blümich

ABSTRACT

Biodiesel produced mainly by the base-catalyzed transesterification of vegetable oils or animal fats with a short chain alcohol, has become an attractive alternative to petroleum-based diesel fuel. Even though high-field 1H nuclear magnetic resonance (NMR) is a reliable method for biodiesel quality control, it is restricted by its poor mobility and expensive superconducting coils. As an alternative, this study presents a mobile low-field 1H NMR spectrometer for the analysis of biodiesel samples derived from different feedstock oils. The low-field 1H NMR spectra of all the compounds coexisting in a typical transesterification reaction such as rapeseed oil, rapeseed biodiesel, methanol, and glycerol, could be clearly differentiated. Field-dependent characteristic parameters such as relaxation times are provided. The degree of saturation of the different biofuels samples could be reliably estimated via integration of the resolved signals of the spectra. The obtained results agreed well with those measured at high-field 1H NMR. Since this compositional information is directly related to the biodiesel properties, the presented mobile low-field 1H NMR device built from permanent magnets arrayed in a Halbach geometry, constitutes an excellent alternative tool for biodiesel quality control. More... »

PAGES

41-53

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00723-012-0405-y

DOI

http://dx.doi.org/10.1007/s00723-012-0405-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031523665


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Institut f\u00fcr Technische Chemie und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garro Linck", 
        "givenName": "Yamila", 
        "id": "sg:person.0676616351.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676616351.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State University of Campinas", 
          "id": "https://www.grid.ac/institutes/grid.411087.b", 
          "name": [
            "Institut f\u00fcr Technische Chemie und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany", 
            "Instituto de Qu\u00edmica, Unicamp, CP 6154, 13084-971, Campinas, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Killner", 
        "givenName": "M. H. M.", 
        "id": "sg:person.011207461713.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207461713.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Institut f\u00fcr Technische Chemie und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danieli", 
        "givenName": "E.", 
        "id": "sg:person.0626067633.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626067633.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Institut f\u00fcr Technische Chemie und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bl\u00fcmich", 
        "givenName": "B.", 
        "id": "sg:person.013534270325.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534270325.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.algal.2012.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002227108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lite.200990000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016849260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2007.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018303991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2011.03.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021084449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1cp21180c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025570162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ejlt.200700058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026465898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11746-000-0078-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026727643", 
          "https://doi.org/10.1007/s11746-000-0078-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2005.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027276205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b106889j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030860674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2004.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032296016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0103-50532005000800003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034212132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ejlt.200300880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036641331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201000221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039150788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2011.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042680734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuproc.2004.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048587329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00076a019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054970422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef101096x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055477425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef101096x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055477425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef801011v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055481865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef801011v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055481865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1135499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062454945"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-02", 
    "datePublishedReg": "2013-02-01", 
    "description": "Biodiesel produced mainly by the base-catalyzed transesterification of vegetable oils or animal fats with a short chain alcohol, has become an attractive alternative to petroleum-based diesel fuel. Even though high-field 1H nuclear magnetic resonance (NMR) is a reliable method for biodiesel quality control, it is restricted by its poor mobility and expensive superconducting coils. As an alternative, this study presents a mobile low-field 1H NMR spectrometer for the analysis of biodiesel samples derived from different feedstock oils. The low-field 1H NMR spectra of all the compounds coexisting in a typical transesterification reaction such as rapeseed oil, rapeseed biodiesel, methanol, and glycerol, could be clearly differentiated. Field-dependent characteristic parameters such as relaxation times are provided. The degree of saturation of the different biofuels samples could be reliably estimated via integration of the resolved signals of the spectra. The obtained results agreed well with those measured at high-field 1H NMR. Since this compositional information is directly related to the biodiesel properties, the presented mobile low-field 1H NMR device built from permanent magnets arrayed in a Halbach geometry, constitutes an excellent alternative tool for biodiesel quality control.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00723-012-0405-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1102112", 
        "issn": [
          "0937-9347", 
          "1613-7507"
        ], 
        "name": "Applied Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Mobile Low-Field 1H NMR Spectroscopy Desktop Analysis of Biodiesel Production", 
    "pagination": "41-53", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "962c60adcf9591d67942cf16fac6ced081683fd164c0b03119758b361af64ea2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00723-012-0405-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031523665"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00723-012-0405-y", 
      "https://app.dimensions.ai/details/publication/pub.1031523665"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000489.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00723-012-0405-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00723-012-0405-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00723-012-0405-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00723-012-0405-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00723-012-0405-y'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00723-012-0405-y schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author N6c6677d6d5954a008bb9121800978040
4 schema:citation sg:pub.10.1007/s11746-000-0078-5
5 https://doi.org/10.1002/anie.201000221
6 https://doi.org/10.1002/ejlt.200300880
7 https://doi.org/10.1002/ejlt.200700058
8 https://doi.org/10.1002/lite.200990000
9 https://doi.org/10.1016/j.algal.2012.02.001
10 https://doi.org/10.1016/j.biortech.2011.03.111
11 https://doi.org/10.1016/j.fuel.2011.06.025
12 https://doi.org/10.1016/j.fuproc.2004.11.002
13 https://doi.org/10.1016/j.rser.2004.09.002
14 https://doi.org/10.1016/j.rser.2005.08.006
15 https://doi.org/10.1016/j.talanta.2007.08.004
16 https://doi.org/10.1021/ac00076a019
17 https://doi.org/10.1021/ef101096x
18 https://doi.org/10.1021/ef801011v
19 https://doi.org/10.1039/b106889j
20 https://doi.org/10.1039/c1cp21180c
21 https://doi.org/10.1126/science.1135499
22 https://doi.org/10.1590/s0103-50532005000800003
23 schema:datePublished 2013-02
24 schema:datePublishedReg 2013-02-01
25 schema:description Biodiesel produced mainly by the base-catalyzed transesterification of vegetable oils or animal fats with a short chain alcohol, has become an attractive alternative to petroleum-based diesel fuel. Even though high-field 1H nuclear magnetic resonance (NMR) is a reliable method for biodiesel quality control, it is restricted by its poor mobility and expensive superconducting coils. As an alternative, this study presents a mobile low-field 1H NMR spectrometer for the analysis of biodiesel samples derived from different feedstock oils. The low-field 1H NMR spectra of all the compounds coexisting in a typical transesterification reaction such as rapeseed oil, rapeseed biodiesel, methanol, and glycerol, could be clearly differentiated. Field-dependent characteristic parameters such as relaxation times are provided. The degree of saturation of the different biofuels samples could be reliably estimated via integration of the resolved signals of the spectra. The obtained results agreed well with those measured at high-field 1H NMR. Since this compositional information is directly related to the biodiesel properties, the presented mobile low-field 1H NMR device built from permanent magnets arrayed in a Halbach geometry, constitutes an excellent alternative tool for biodiesel quality control.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N43b046ad2a454ee2a46a7ac96b249d91
30 Nc7b4faaaf0ec4288b6b5a960e3288c8e
31 sg:journal.1102112
32 schema:name Mobile Low-Field 1H NMR Spectroscopy Desktop Analysis of Biodiesel Production
33 schema:pagination 41-53
34 schema:productId N587c70d55bab4d859b47dddb274ace9b
35 Nd5e480d31e394bbd95715e7eb99de252
36 Ne81be046885c41d183339dec4802c13e
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031523665
38 https://doi.org/10.1007/s00723-012-0405-y
39 schema:sdDatePublished 2019-04-11T01:02
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N646e0cbc5b2243498c11817e3e3db3c0
42 schema:url http://link.springer.com/10.1007/s00723-012-0405-y
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N07962f27e4b4494ead7b7c8cce3559f5 rdf:first sg:person.0626067633.93
47 rdf:rest Ne044a3ef75794b4b8bca2acb09c9c22d
48 N43b046ad2a454ee2a46a7ac96b249d91 schema:volumeNumber 44
49 rdf:type schema:PublicationVolume
50 N587c70d55bab4d859b47dddb274ace9b schema:name dimensions_id
51 schema:value pub.1031523665
52 rdf:type schema:PropertyValue
53 N646e0cbc5b2243498c11817e3e3db3c0 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N6c6677d6d5954a008bb9121800978040 rdf:first sg:person.0676616351.47
56 rdf:rest Nbed65545b6204048a71325388f82d73a
57 Nbed65545b6204048a71325388f82d73a rdf:first sg:person.011207461713.07
58 rdf:rest N07962f27e4b4494ead7b7c8cce3559f5
59 Nc7b4faaaf0ec4288b6b5a960e3288c8e schema:issueNumber 1-2
60 rdf:type schema:PublicationIssue
61 Nd5e480d31e394bbd95715e7eb99de252 schema:name readcube_id
62 schema:value 962c60adcf9591d67942cf16fac6ced081683fd164c0b03119758b361af64ea2
63 rdf:type schema:PropertyValue
64 Ne044a3ef75794b4b8bca2acb09c9c22d rdf:first sg:person.013534270325.98
65 rdf:rest rdf:nil
66 Ne81be046885c41d183339dec4802c13e schema:name doi
67 schema:value 10.1007/s00723-012-0405-y
68 rdf:type schema:PropertyValue
69 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
70 schema:name Chemical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
73 schema:name Analytical Chemistry
74 rdf:type schema:DefinedTerm
75 sg:journal.1102112 schema:issn 0937-9347
76 1613-7507
77 schema:name Applied Magnetic Resonance
78 rdf:type schema:Periodical
79 sg:person.011207461713.07 schema:affiliation https://www.grid.ac/institutes/grid.411087.b
80 schema:familyName Killner
81 schema:givenName M. H. M.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207461713.07
83 rdf:type schema:Person
84 sg:person.013534270325.98 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
85 schema:familyName Blümich
86 schema:givenName B.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534270325.98
88 rdf:type schema:Person
89 sg:person.0626067633.93 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
90 schema:familyName Danieli
91 schema:givenName E.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626067633.93
93 rdf:type schema:Person
94 sg:person.0676616351.47 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
95 schema:familyName Garro Linck
96 schema:givenName Yamila
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676616351.47
98 rdf:type schema:Person
99 sg:pub.10.1007/s11746-000-0078-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026727643
100 https://doi.org/10.1007/s11746-000-0078-5
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1002/anie.201000221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039150788
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/ejlt.200300880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036641331
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/ejlt.200700058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026465898
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/lite.200990000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016849260
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.algal.2012.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002227108
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.biortech.2011.03.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021084449
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.fuel.2011.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042680734
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.fuproc.2004.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048587329
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.rser.2004.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032296016
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.rser.2005.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027276205
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.talanta.2007.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018303991
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1021/ac00076a019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054970422
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/ef101096x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055477425
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1021/ef801011v schema:sameAs https://app.dimensions.ai/details/publication/pub.1055481865
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1039/b106889j schema:sameAs https://app.dimensions.ai/details/publication/pub.1030860674
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1039/c1cp21180c schema:sameAs https://app.dimensions.ai/details/publication/pub.1025570162
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1126/science.1135499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454945
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1590/s0103-50532005000800003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034212132
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.1957.a schema:alternateName RWTH Aachen University
139 schema:name Institut für Technische Chemie und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.411087.b schema:alternateName State University of Campinas
142 schema:name Institut für Technische Chemie und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
143 Instituto de Química, Unicamp, CP 6154, 13084-971, Campinas, Brazil
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...