Temperature Dependence of Hyperfine Interaction for 15N Nitroxide in a Glassy Matrix at 10–210 K View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09-25

AUTHORS

A. V. Pivtsov, L. V. Kulik, N. V. Surovtsev, S. V. Adichtchev, I. A. Kirilyuk, I. A. Grigor’ev, M. V. Fedin, S. A. Dzuba

ABSTRACT

Principal 15N hyperfine interaction (hfi) values in 15N-substituted nitroxide spin probe 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl dissolved in nematic liquid crystal 4-pentyl-4′-cyanobiphenyl (5CB) were measured in a wide temperature range of 10–210 K, for 5CB frozen to a glassy state. X-band continuous-wave electron paramagnetic resonance (CW EPR) and pulse X- and Q-band 15N electron-nuclear double resonance (ENDOR) techniques were employed. To avoid microwave saturation at low temperatures in CW EPR studies, a holmium complex Ho(Dbm)3Bpy (where Dbm is dibenzoylmethane and Bpy is 2,2′-bipyridine) was added. X- and Q-band 15N-ENDOR data have shown that the nitroxide hfi tensor is axially symmetric. The combination of data from all techniques allowed us to obtain the temperature dependence of isotropic and anisotropic parts of the nitroxide hfi tensor. Above ~100 K, a linear dependence of the anisotropic hfi value was observed, whereas below 30 K it was found to be nearly temperature independent. Such a behavior can be interpreted using the model of restricted orientational motions (librations) of a spin probe in a glassy matrix, with quantum effects occurring at low temperature (“freezing” of the librations). The energy quantum for the libration motion estimated from the temperature dependence of hfi of the spin probe is 84 cm−1. Low-frequency Raman spectra of 5CB were also obtained, which provided the mean vibrational frequency of 76 cm−1 for glassy 5CB. More... »

PAGES

411-429

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00723-011-0272-y

DOI

http://dx.doi.org/10.1007/s00723-011-0272-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052844255


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418912.7", 
          "name": [
            "Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pivtsov", 
        "givenName": "A. V.", 
        "id": "sg:person.0700444735.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700444735.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418912.7", 
          "name": [
            "Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulik", 
        "givenName": "L. V.", 
        "id": "sg:person.0615477666.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615477666.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Automation and Electrometry, Ak. Koptyuga 1, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.435127.6", 
          "name": [
            "Institute of Automation and Electrometry, Ak. Koptyuga 1, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Surovtsev", 
        "givenName": "N. V.", 
        "id": "sg:person.01323630257.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323630257.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Automation and Electrometry, Ak. Koptyuga 1, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.435127.6", 
          "name": [
            "Institute of Automation and Electrometry, Ak. Koptyuga 1, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adichtchev", 
        "givenName": "S. V.", 
        "id": "sg:person.01002331053.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002331053.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Organic Chemistry, Lavrentyev Ave. 9, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Organic Chemistry, Lavrentyev Ave. 9, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirilyuk", 
        "givenName": "I. A.", 
        "id": "sg:person.01116310205.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116310205.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Organic Chemistry, Lavrentyev Ave. 9, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Organic Chemistry, Lavrentyev Ave. 9, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grigor\u2019ev", 
        "givenName": "I. A.", 
        "id": "sg:person.0751557021.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751557021.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Tomography Center, Institutskaya 3a, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.419389.e", 
          "name": [
            "International Tomography Center, Institutskaya 3a, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedin", 
        "givenName": "M. V.", 
        "id": "sg:person.01062002050.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062002050.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418912.7", 
          "name": [
            "Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dzuba", 
        "givenName": "S. A.", 
        "id": "sg:person.0736311776.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736311776.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03166223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014648333", 
          "https://doi.org/10.1007/bf03166223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-005-2438-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011373894", 
          "https://doi.org/10.1007/s11120-005-2438-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03162452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027735574", 
          "https://doi.org/10.1007/bf03162452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00723-009-0078-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046873653", 
          "https://doi.org/10.1007/s00723-009-0078-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00723-009-0064-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010419544", 
          "https://doi.org/10.1007/s00723-009-0064-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510070251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010803436", 
          "https://doi.org/10.1007/s100510070251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03162611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021893156", 
          "https://doi.org/10.1007/bf03162611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00753815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025192564", 
          "https://doi.org/10.1007/bf00753815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-0710-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027554520", 
          "https://doi.org/10.1007/978-1-4757-0710-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00723-010-0170-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032213086", 
          "https://doi.org/10.1007/s00723-010-0170-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-09-25", 
    "datePublishedReg": "2011-09-25", 
    "description": "Principal 15N hyperfine interaction (hfi) values in 15N-substituted nitroxide spin probe 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl dissolved in nematic liquid crystal 4-pentyl-4\u2032-cyanobiphenyl (5CB) were measured in a wide temperature range of 10\u2013210\u00a0K, for 5CB frozen to a glassy state. X-band continuous-wave electron paramagnetic resonance (CW EPR) and pulse X- and Q-band 15N electron-nuclear double resonance (ENDOR) techniques were employed. To avoid microwave saturation at low temperatures in CW EPR studies, a holmium complex Ho(Dbm)3Bpy (where Dbm is dibenzoylmethane and Bpy is 2,2\u2032-bipyridine) was added. X- and Q-band 15N-ENDOR data have shown that the nitroxide hfi tensor is axially symmetric. The combination of data from all techniques allowed us to obtain the temperature dependence of isotropic and anisotropic parts of the nitroxide hfi tensor. Above ~100\u00a0K, a linear dependence of the anisotropic hfi value was observed, whereas below 30\u00a0K it was found to be nearly temperature independent. Such a behavior can be interpreted using the model of restricted orientational motions (librations) of a spin probe in a glassy matrix, with quantum effects occurring at low temperature (\u201cfreezing\u201d of the librations). The energy quantum for the libration motion estimated from the temperature dependence of hfi of the spin probe is 84\u00a0cm\u22121. Low-frequency Raman spectra of 5CB were also obtained, which provided the mean vibrational frequency of 76\u00a0cm\u22121 for glassy 5CB.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00723-011-0272-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1102112", 
        "issn": [
          "0937-9347", 
          "1613-7507"
        ], 
        "name": "Applied Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "keywords": [
      "X-band continuous-wave electron paramagnetic resonance", 
      "electron nuclear double resonance (ENDOR) techniques", 
      "double resonance technique", 
      "temperature dependence", 
      "mean vibrational frequency", 
      "low-frequency Raman spectra", 
      "continuous-wave electron paramagnetic resonance", 
      "quantum effects", 
      "energy quanta", 
      "spin probes", 
      "hyperfine interaction", 
      "glassy matrix", 
      "low temperature", 
      "electron paramagnetic resonance", 
      "liquid crystal 4", 
      "nematic liquid crystal 4", 
      "microwave saturation", 
      "resonance techniques", 
      "vibrational frequencies", 
      "anisotropic part", 
      "orientational motion", 
      "crystal 4", 
      "paramagnetic resonance", 
      "libration motion", 
      "nitroxide spin probes", 
      "Q-band", 
      "Raman spectra", 
      "wide temperature range", 
      "CW-EPR study", 
      "glassy state", 
      "linear dependence", 
      "dependence", 
      "EPR studies", 
      "probe", 
      "quantum", 
      "interaction values", 
      "temperature range", 
      "tensor", 
      "temperature", 
      "motion", 
      "resonance", 
      "holmium", 
      "spectra", 
      "combination of data", 
      "HFI", 
      "matrix", 
      "state", 
      "technique", 
      "nitroxides", 
      "frequency", 
      "range", 
      "interaction", 
      "oxyl", 
      "saturation", 
      "model", 
      "values", 
      "data", 
      "behavior", 
      "effect", 
      "combination", 
      "part", 
      "study"
    ], 
    "name": "Temperature Dependence of Hyperfine Interaction for 15N Nitroxide in a Glassy Matrix at 10\u2013210 K", 
    "pagination": "411-429", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052844255"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00723-011-0272-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00723-011-0272-y", 
      "https://app.dimensions.ai/details/publication/pub.1052844255"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00723-011-0272-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00723-011-0272-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00723-011-0272-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00723-011-0272-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00723-011-0272-y'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      22 PREDICATES      97 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00723-011-0272-y schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N85229e6546c0486ebfea8b2debfcfd20
4 schema:citation sg:pub.10.1007/978-1-4757-0710-6
5 sg:pub.10.1007/bf00753815
6 sg:pub.10.1007/bf03162452
7 sg:pub.10.1007/bf03162611
8 sg:pub.10.1007/bf03166223
9 sg:pub.10.1007/s00723-009-0064-9
10 sg:pub.10.1007/s00723-009-0078-3
11 sg:pub.10.1007/s00723-010-0170-8
12 sg:pub.10.1007/s100510070251
13 sg:pub.10.1007/s11120-005-2438-7
14 schema:datePublished 2011-09-25
15 schema:datePublishedReg 2011-09-25
16 schema:description Principal 15N hyperfine interaction (hfi) values in 15N-substituted nitroxide spin probe 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl dissolved in nematic liquid crystal 4-pentyl-4′-cyanobiphenyl (5CB) were measured in a wide temperature range of 10–210 K, for 5CB frozen to a glassy state. X-band continuous-wave electron paramagnetic resonance (CW EPR) and pulse X- and Q-band 15N electron-nuclear double resonance (ENDOR) techniques were employed. To avoid microwave saturation at low temperatures in CW EPR studies, a holmium complex Ho(Dbm)3Bpy (where Dbm is dibenzoylmethane and Bpy is 2,2′-bipyridine) was added. X- and Q-band 15N-ENDOR data have shown that the nitroxide hfi tensor is axially symmetric. The combination of data from all techniques allowed us to obtain the temperature dependence of isotropic and anisotropic parts of the nitroxide hfi tensor. Above ~100 K, a linear dependence of the anisotropic hfi value was observed, whereas below 30 K it was found to be nearly temperature independent. Such a behavior can be interpreted using the model of restricted orientational motions (librations) of a spin probe in a glassy matrix, with quantum effects occurring at low temperature (“freezing” of the librations). The energy quantum for the libration motion estimated from the temperature dependence of hfi of the spin probe is 84 cm−1. Low-frequency Raman spectra of 5CB were also obtained, which provided the mean vibrational frequency of 76 cm−1 for glassy 5CB.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N57fd5279b17b41beae41d42366e567ee
21 Nc3dff37c1dc54c77aad4baa433690fbe
22 sg:journal.1102112
23 schema:keywords CW-EPR study
24 EPR studies
25 HFI
26 Q-band
27 Raman spectra
28 X-band continuous-wave electron paramagnetic resonance
29 anisotropic part
30 behavior
31 combination
32 combination of data
33 continuous-wave electron paramagnetic resonance
34 crystal 4
35 data
36 dependence
37 double resonance technique
38 effect
39 electron nuclear double resonance (ENDOR) techniques
40 electron paramagnetic resonance
41 energy quanta
42 frequency
43 glassy matrix
44 glassy state
45 holmium
46 hyperfine interaction
47 interaction
48 interaction values
49 libration motion
50 linear dependence
51 liquid crystal 4
52 low temperature
53 low-frequency Raman spectra
54 matrix
55 mean vibrational frequency
56 microwave saturation
57 model
58 motion
59 nematic liquid crystal 4
60 nitroxide spin probes
61 nitroxides
62 orientational motion
63 oxyl
64 paramagnetic resonance
65 part
66 probe
67 quantum
68 quantum effects
69 range
70 resonance
71 resonance techniques
72 saturation
73 spectra
74 spin probes
75 state
76 study
77 technique
78 temperature
79 temperature dependence
80 temperature range
81 tensor
82 values
83 vibrational frequencies
84 wide temperature range
85 schema:name Temperature Dependence of Hyperfine Interaction for 15N Nitroxide in a Glassy Matrix at 10–210 K
86 schema:pagination 411-429
87 schema:productId N2845d3dcd7614cbe8d95e0c3a1a70f24
88 N73ce9fa69da34e8ba4aac305b9fbf5d6
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052844255
90 https://doi.org/10.1007/s00723-011-0272-y
91 schema:sdDatePublished 2022-05-10T10:05
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Nb8b6b6d2d47e4c5984fda1ed657ac117
94 schema:url https://doi.org/10.1007/s00723-011-0272-y
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N10cdd087f56c42ffbe8d4e50eae3dbc3 rdf:first sg:person.0736311776.12
99 rdf:rest rdf:nil
100 N16328629075642b5934a3727d74926a2 rdf:first sg:person.0751557021.88
101 rdf:rest Nb8e40221e4b54d14a4cd7b09e4b21515
102 N2845d3dcd7614cbe8d95e0c3a1a70f24 schema:name doi
103 schema:value 10.1007/s00723-011-0272-y
104 rdf:type schema:PropertyValue
105 N42b007a462fd4ef6a1a29aab8c2ebfc6 rdf:first sg:person.01002331053.22
106 rdf:rest N449b77d145d4495ba0b8a49dafdbe023
107 N449b77d145d4495ba0b8a49dafdbe023 rdf:first sg:person.01116310205.40
108 rdf:rest N16328629075642b5934a3727d74926a2
109 N57fd5279b17b41beae41d42366e567ee schema:volumeNumber 41
110 rdf:type schema:PublicationVolume
111 N73ce9fa69da34e8ba4aac305b9fbf5d6 schema:name dimensions_id
112 schema:value pub.1052844255
113 rdf:type schema:PropertyValue
114 N85229e6546c0486ebfea8b2debfcfd20 rdf:first sg:person.0700444735.88
115 rdf:rest Nf7e4a41725fe43edad1b37d2d54f6020
116 Nb8b6b6d2d47e4c5984fda1ed657ac117 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nb8e40221e4b54d14a4cd7b09e4b21515 rdf:first sg:person.01062002050.07
119 rdf:rest N10cdd087f56c42ffbe8d4e50eae3dbc3
120 Nc3dff37c1dc54c77aad4baa433690fbe schema:issueNumber 2-4
121 rdf:type schema:PublicationIssue
122 Nf33a578eccfa44609508121409d9ad59 rdf:first sg:person.01323630257.91
123 rdf:rest N42b007a462fd4ef6a1a29aab8c2ebfc6
124 Nf7e4a41725fe43edad1b37d2d54f6020 rdf:first sg:person.0615477666.63
125 rdf:rest Nf33a578eccfa44609508121409d9ad59
126 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
127 schema:name Physical Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
130 schema:name Other Physical Sciences
131 rdf:type schema:DefinedTerm
132 sg:journal.1102112 schema:issn 0937-9347
133 1613-7507
134 schema:name Applied Magnetic Resonance
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.01002331053.22 schema:affiliation grid-institutes:grid.435127.6
138 schema:familyName Adichtchev
139 schema:givenName S. V.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002331053.22
141 rdf:type schema:Person
142 sg:person.01062002050.07 schema:affiliation grid-institutes:grid.419389.e
143 schema:familyName Fedin
144 schema:givenName M. V.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062002050.07
146 rdf:type schema:Person
147 sg:person.01116310205.40 schema:affiliation grid-institutes:None
148 schema:familyName Kirilyuk
149 schema:givenName I. A.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116310205.40
151 rdf:type schema:Person
152 sg:person.01323630257.91 schema:affiliation grid-institutes:grid.435127.6
153 schema:familyName Surovtsev
154 schema:givenName N. V.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323630257.91
156 rdf:type schema:Person
157 sg:person.0615477666.63 schema:affiliation grid-institutes:grid.418912.7
158 schema:familyName Kulik
159 schema:givenName L. V.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615477666.63
161 rdf:type schema:Person
162 sg:person.0700444735.88 schema:affiliation grid-institutes:grid.418912.7
163 schema:familyName Pivtsov
164 schema:givenName A. V.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700444735.88
166 rdf:type schema:Person
167 sg:person.0736311776.12 schema:affiliation grid-institutes:grid.418912.7
168 schema:familyName Dzuba
169 schema:givenName S. A.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736311776.12
171 rdf:type schema:Person
172 sg:person.0751557021.88 schema:affiliation grid-institutes:None
173 schema:familyName Grigor’ev
174 schema:givenName I. A.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751557021.88
176 rdf:type schema:Person
177 sg:pub.10.1007/978-1-4757-0710-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027554520
178 https://doi.org/10.1007/978-1-4757-0710-6
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/bf00753815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025192564
181 https://doi.org/10.1007/bf00753815
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/bf03162452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027735574
184 https://doi.org/10.1007/bf03162452
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/bf03162611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021893156
187 https://doi.org/10.1007/bf03162611
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/bf03166223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014648333
190 https://doi.org/10.1007/bf03166223
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s00723-009-0064-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010419544
193 https://doi.org/10.1007/s00723-009-0064-9
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s00723-009-0078-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046873653
196 https://doi.org/10.1007/s00723-009-0078-3
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s00723-010-0170-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032213086
199 https://doi.org/10.1007/s00723-010-0170-8
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s100510070251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010803436
202 https://doi.org/10.1007/s100510070251
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s11120-005-2438-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011373894
205 https://doi.org/10.1007/s11120-005-2438-7
206 rdf:type schema:CreativeWork
207 grid-institutes:None schema:alternateName Institute of Organic Chemistry, Lavrentyev Ave. 9, 630090, Novosibirsk, Russia
208 schema:name Institute of Organic Chemistry, Lavrentyev Ave. 9, 630090, Novosibirsk, Russia
209 rdf:type schema:Organization
210 grid-institutes:grid.418912.7 schema:alternateName Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090, Novosibirsk, Russia
211 schema:name Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090, Novosibirsk, Russia
212 rdf:type schema:Organization
213 grid-institutes:grid.419389.e schema:alternateName International Tomography Center, Institutskaya 3a, 630090, Novosibirsk, Russia
214 schema:name International Tomography Center, Institutskaya 3a, 630090, Novosibirsk, Russia
215 rdf:type schema:Organization
216 grid-institutes:grid.435127.6 schema:alternateName Institute of Automation and Electrometry, Ak. Koptyuga 1, 630090, Novosibirsk, Russia
217 schema:name Institute of Automation and Electrometry, Ak. Koptyuga 1, 630090, Novosibirsk, Russia
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...