Magnetic Resonance Study of Detonation Nanodiamonds with Surface Chemically Modified by Transition Metal Ions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-10-30

AUTHORS

A. M. Panich, A. I. Shames, O. Medvedev, V. Yu. Osipov, A. E. Aleksenskiy, A. Ya. Vul’

ABSTRACT

We report on electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) study of detonation nanodiamonds (DND) with the surface modified by copper and cobalt ions. The EMR spectrum of the pure DND sample shows an intense singlet originating from broken carbon bonds, while the spectra of copper- and cobalt-modified samples reveal additional signals with g > 2 and pronounced hyperfine structure (for copper). Increase in the Cu/Co concentration causes an increase of the corresponding EMR signals and broadening of the intense carbon-inherited singlet line. Subsequent annealing of the copper-modified samples in a hydrogen gas stream at 550 and 900°C causes narrowing of the singlet line and reduction of the Cu2+-related components. Applying the same annealing process to the cobalt-modified samples leads to broadening of the singlet line, reduction of Co2+ component and appearance of new intense low-field signals. NMR data correlate well with the EMR findings and yield information on interactions and locations of transition metal ions. 13C nuclear spin–lattice relaxation rate R1 in pure DND is driven by the interaction of nuclear spins with unpaired electron spins of broken bonds. Chemical modification of the DND surface by Cu and Co causes an increase in the relaxation rate, revealing appearance of paramagnetic Cu2+ and Co2+ complexes at the DND surface and their interaction with the carbon nuclear spins, both directly and via a coupling of Cu2+ and Co2+ electrons with those of the broken bonds. The aforementioned annealing of the Cu- and Co-DND results in an inverse process, i.e., a reduction of the relaxation rate, indicating that these complexes are destroyed and metal ions presumably join each other forming copper and cobalt nanoclusters. In the case of Co the nanoclusters are ferromagnetic, which results in the noticeable broadening of the 13C NMR lines. More... »

PAGES

317

References to SciGraph publications

  • 2004-04. Intercalation of ultrafine-dispersed diamond in aqueous suspensions in PHYSICS OF THE SOLID STATE
  • 2006-08-02. Nuclear magnetic resonance study of ultrananocrystalline diamonds in THE EUROPEAN PHYSICAL JOURNAL B
  • 2005-01-01. Magnetic Resonance Study of Nanodiamonds in SYNTHESIS, PROPERTIES AND APPLICATIONS OF ULTRANANOCRYSTALLINE DIAMOND
  • 2003-11-23. Ultradispersity of diamond at the nanoscale in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00723-009-0028-0

    DOI

    http://dx.doi.org/10.1007/s00723-009-0028-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022303908


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Inorganic Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Ben-Gurion University of the Negev, 84105, Be\u2019er-Sheva, Israel", 
              "id": "http://www.grid.ac/institutes/grid.7489.2", 
              "name": [
                "Department of Physics, Ben-Gurion University of the Negev, 84105, Be\u2019er-Sheva, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Panich", 
            "givenName": "A. M.", 
            "id": "sg:person.0766661012.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766661012.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Ben-Gurion University of the Negev, 84105, Be\u2019er-Sheva, Israel", 
              "id": "http://www.grid.ac/institutes/grid.7489.2", 
              "name": [
                "Department of Physics, Ben-Gurion University of the Negev, 84105, Be\u2019er-Sheva, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shames", 
            "givenName": "A. I.", 
            "id": "sg:person.0775760400.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775760400.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Ilan Ramon Youth Physics Center, Ben-Gurion University of the Negev, 84105, Be\u2019er-Sheva, Israel", 
              "id": "http://www.grid.ac/institutes/grid.7489.2", 
              "name": [
                "The Ilan Ramon Youth Physics Center, Ben-Gurion University of the Negev, 84105, Be\u2019er-Sheva, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Medvedev", 
            "givenName": "O.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia", 
              "id": "http://www.grid.ac/institutes/grid.423485.c", 
              "name": [
                "Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Osipov", 
            "givenName": "V. Yu.", 
            "id": "sg:person.011737110415.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011737110415.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia", 
              "id": "http://www.grid.ac/institutes/grid.423485.c", 
              "name": [
                "Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aleksenskiy", 
            "givenName": "A. E.", 
            "id": "sg:person.01333775152.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333775152.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia", 
              "id": "http://www.grid.ac/institutes/grid.423485.c", 
              "name": [
                "Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vul\u2019", 
            "givenName": "A. Ya.", 
            "id": "sg:person.014132507145.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014132507145.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmat1018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001119303", 
              "https://doi.org/10.1038/nmat1018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2006-00314-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005781766", 
              "https://doi.org/10.1140/epjb/e2006-00314-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/1-4020-3322-2_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010519525", 
              "https://doi.org/10.1007/1-4020-3322-2_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1711452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030925971", 
              "https://doi.org/10.1134/1.1711452"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-10-30", 
        "datePublishedReg": "2009-10-30", 
        "description": "We report on electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) study of detonation nanodiamonds (DND) with the surface modified by copper and cobalt ions. The EMR spectrum of the pure DND sample shows an intense singlet originating from broken carbon bonds, while the spectra of copper- and cobalt-modified samples reveal additional signals with g\u00a0>\u00a02 and pronounced hyperfine structure (for copper). Increase in the Cu/Co concentration causes an increase of the corresponding EMR signals and broadening of the intense carbon-inherited singlet line. Subsequent annealing of the copper-modified samples in a hydrogen gas stream at 550 and 900\u00b0C causes narrowing of the singlet line and reduction of the Cu2+-related components. Applying the same annealing process to the cobalt-modified samples leads to broadening of the singlet line, reduction of Co2+ component and appearance of new intense low-field signals. NMR data correlate well with the EMR findings and yield information on interactions and locations of transition metal ions. 13C nuclear spin\u2013lattice relaxation rate R1 in pure DND is driven by the interaction of nuclear spins with unpaired electron spins of broken bonds. Chemical modification of the DND surface by Cu and Co causes an increase in the relaxation rate, revealing appearance of paramagnetic Cu2+ and Co2+ complexes at the DND surface and their interaction with the carbon nuclear spins, both directly and via a coupling of Cu2+ and Co2+ electrons with those of the broken bonds. The aforementioned annealing of the Cu- and Co-DND results in an inverse process, i.e., a reduction of the relaxation rate, indicating that these complexes are destroyed and metal ions presumably join each other forming copper and cobalt nanoclusters. In the case of Co the nanoclusters are ferromagnetic, which results in the noticeable broadening of the 13C NMR lines.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00723-009-0028-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5367978", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1102112", 
            "issn": [
              "0937-9347", 
              "1613-7507"
            ], 
            "name": "Applied Magnetic Resonance", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "36"
          }
        ], 
        "keywords": [
          "transition metal ions", 
          "metal ions", 
          "magnetic resonance studies", 
          "detonation nanodiamonds", 
          "electron magnetic resonance", 
          "DND surface", 
          "resonance studies", 
          "NMR data correlate", 
          "nuclear magnetic resonance studies", 
          "reduction of CO2", 
          "hydrogen gas stream", 
          "spectra of copper", 
          "unpaired electron spins", 
          "singlet line", 
          "low-field signal", 
          "paramagnetic Cu2", 
          "spin-lattice relaxation rate R1", 
          "case of CO", 
          "chemical modification", 
          "DND samples", 
          "cobalt ions", 
          "carbon bonds", 
          "broken carbon bonds", 
          "relaxation rate", 
          "broken bonds", 
          "NMR line", 
          "cobalt nanoclusters", 
          "Cu2", 
          "EMR spectra", 
          "ions", 
          "bonds", 
          "intense singlet", 
          "gas stream", 
          "noticeable broadening", 
          "copper", 
          "relaxation rate R1", 
          "nanoclusters", 
          "nuclear spins", 
          "nanodiamonds", 
          "magnetic resonance", 
          "CO", 
          "complexes", 
          "same annealing process", 
          "Cu", 
          "hyperfine structure", 
          "CO2", 
          "surface", 
          "CO concentration", 
          "spectra", 
          "annealing process", 
          "rate R1", 
          "subsequent annealing", 
          "electron spin", 
          "interaction", 
          "singlet", 
          "data correlate", 
          "broadening", 
          "electrons", 
          "samples", 
          "spin", 
          "annealing", 
          "resonance", 
          "R1", 
          "structure", 
          "modification", 
          "reduction", 
          "concentration", 
          "process", 
          "coupling", 
          "inverse process", 
          "additional signals", 
          "components", 
          "EMR signals", 
          "increase", 
          "streams", 
          "rate", 
          "study", 
          "signals", 
          "lines", 
          "appearance", 
          "information", 
          "cases", 
          "location", 
          "findings", 
          "correlates", 
          "cause"
        ], 
        "name": "Magnetic Resonance Study of Detonation Nanodiamonds with Surface Chemically Modified by Transition Metal Ions", 
        "pagination": "317", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022303908"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00723-009-0028-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00723-009-0028-0", 
          "https://app.dimensions.ai/details/publication/pub.1022303908"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_484.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00723-009-0028-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00723-009-0028-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00723-009-0028-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00723-009-0028-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00723-009-0028-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    205 TRIPLES      22 PREDICATES      116 URIs      103 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00723-009-0028-0 schema:about anzsrc-for:03
    2 anzsrc-for:0302
    3 anzsrc-for:0306
    4 schema:author N9bf285094c034eabbf443a1e2d094ed1
    5 schema:citation sg:pub.10.1007/1-4020-3322-2_21
    6 sg:pub.10.1038/nmat1018
    7 sg:pub.10.1134/1.1711452
    8 sg:pub.10.1140/epjb/e2006-00314-7
    9 schema:datePublished 2009-10-30
    10 schema:datePublishedReg 2009-10-30
    11 schema:description We report on electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) study of detonation nanodiamonds (DND) with the surface modified by copper and cobalt ions. The EMR spectrum of the pure DND sample shows an intense singlet originating from broken carbon bonds, while the spectra of copper- and cobalt-modified samples reveal additional signals with g > 2 and pronounced hyperfine structure (for copper). Increase in the Cu/Co concentration causes an increase of the corresponding EMR signals and broadening of the intense carbon-inherited singlet line. Subsequent annealing of the copper-modified samples in a hydrogen gas stream at 550 and 900°C causes narrowing of the singlet line and reduction of the Cu2+-related components. Applying the same annealing process to the cobalt-modified samples leads to broadening of the singlet line, reduction of Co2+ component and appearance of new intense low-field signals. NMR data correlate well with the EMR findings and yield information on interactions and locations of transition metal ions. 13C nuclear spin–lattice relaxation rate R1 in pure DND is driven by the interaction of nuclear spins with unpaired electron spins of broken bonds. Chemical modification of the DND surface by Cu and Co causes an increase in the relaxation rate, revealing appearance of paramagnetic Cu2+ and Co2+ complexes at the DND surface and their interaction with the carbon nuclear spins, both directly and via a coupling of Cu2+ and Co2+ electrons with those of the broken bonds. The aforementioned annealing of the Cu- and Co-DND results in an inverse process, i.e., a reduction of the relaxation rate, indicating that these complexes are destroyed and metal ions presumably join each other forming copper and cobalt nanoclusters. In the case of Co the nanoclusters are ferromagnetic, which results in the noticeable broadening of the 13C NMR lines.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N8052c0a3ad514ad18a9384eeac0fb428
    16 N8e0b09aaaae540188838b273a48f48a4
    17 sg:journal.1102112
    18 schema:keywords CO
    19 CO concentration
    20 CO2
    21 Cu
    22 Cu2
    23 DND samples
    24 DND surface
    25 EMR signals
    26 EMR spectra
    27 NMR data correlate
    28 NMR line
    29 R1
    30 additional signals
    31 annealing
    32 annealing process
    33 appearance
    34 bonds
    35 broadening
    36 broken bonds
    37 broken carbon bonds
    38 carbon bonds
    39 case of CO
    40 cases
    41 cause
    42 chemical modification
    43 cobalt ions
    44 cobalt nanoclusters
    45 complexes
    46 components
    47 concentration
    48 copper
    49 correlates
    50 coupling
    51 data correlate
    52 detonation nanodiamonds
    53 electron magnetic resonance
    54 electron spin
    55 electrons
    56 findings
    57 gas stream
    58 hydrogen gas stream
    59 hyperfine structure
    60 increase
    61 information
    62 intense singlet
    63 interaction
    64 inverse process
    65 ions
    66 lines
    67 location
    68 low-field signal
    69 magnetic resonance
    70 magnetic resonance studies
    71 metal ions
    72 modification
    73 nanoclusters
    74 nanodiamonds
    75 noticeable broadening
    76 nuclear magnetic resonance studies
    77 nuclear spins
    78 paramagnetic Cu2
    79 process
    80 rate
    81 rate R1
    82 reduction
    83 reduction of CO2
    84 relaxation rate
    85 relaxation rate R1
    86 resonance
    87 resonance studies
    88 same annealing process
    89 samples
    90 signals
    91 singlet
    92 singlet line
    93 spectra
    94 spectra of copper
    95 spin
    96 spin-lattice relaxation rate R1
    97 streams
    98 structure
    99 study
    100 subsequent annealing
    101 surface
    102 transition metal ions
    103 unpaired electron spins
    104 schema:name Magnetic Resonance Study of Detonation Nanodiamonds with Surface Chemically Modified by Transition Metal Ions
    105 schema:pagination 317
    106 schema:productId N10bd6020c1284b6b9b5ab5d6f8091106
    107 Nd9543a2ed28743ea842abba5afd5dfba
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022303908
    109 https://doi.org/10.1007/s00723-009-0028-0
    110 schema:sdDatePublished 2022-05-20T07:25
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher Nd30439733032404c9d8c60edf2ec97be
    113 schema:url https://doi.org/10.1007/s00723-009-0028-0
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N10bd6020c1284b6b9b5ab5d6f8091106 schema:name dimensions_id
    118 schema:value pub.1022303908
    119 rdf:type schema:PropertyValue
    120 N270c3a5539d2483695987102dd5e4ce2 schema:affiliation grid-institutes:grid.7489.2
    121 schema:familyName Medvedev
    122 schema:givenName O.
    123 rdf:type schema:Person
    124 N296e47ed1cda41cf864a3b2f2657310d rdf:first sg:person.01333775152.11
    125 rdf:rest Nfbbc02c1ba2147f2a9d081428fc3488e
    126 N8052c0a3ad514ad18a9384eeac0fb428 schema:issueNumber 2-4
    127 rdf:type schema:PublicationIssue
    128 N86f18992bf72469db2ffc7cacef5552e rdf:first sg:person.0775760400.49
    129 rdf:rest Nfa24afa7bd034b0e86b4bfb064a3ba55
    130 N8e0b09aaaae540188838b273a48f48a4 schema:volumeNumber 36
    131 rdf:type schema:PublicationVolume
    132 N9bf285094c034eabbf443a1e2d094ed1 rdf:first sg:person.0766661012.63
    133 rdf:rest N86f18992bf72469db2ffc7cacef5552e
    134 N9d3eb65019024e718266ef69f6f8ee17 rdf:first sg:person.011737110415.43
    135 rdf:rest N296e47ed1cda41cf864a3b2f2657310d
    136 Nd30439733032404c9d8c60edf2ec97be schema:name Springer Nature - SN SciGraph project
    137 rdf:type schema:Organization
    138 Nd9543a2ed28743ea842abba5afd5dfba schema:name doi
    139 schema:value 10.1007/s00723-009-0028-0
    140 rdf:type schema:PropertyValue
    141 Nfa24afa7bd034b0e86b4bfb064a3ba55 rdf:first N270c3a5539d2483695987102dd5e4ce2
    142 rdf:rest N9d3eb65019024e718266ef69f6f8ee17
    143 Nfbbc02c1ba2147f2a9d081428fc3488e rdf:first sg:person.014132507145.02
    144 rdf:rest rdf:nil
    145 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Chemical Sciences
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Inorganic Chemistry
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Physical Chemistry (incl. Structural)
    153 rdf:type schema:DefinedTerm
    154 sg:grant.5367978 http://pending.schema.org/fundedItem sg:pub.10.1007/s00723-009-0028-0
    155 rdf:type schema:MonetaryGrant
    156 sg:journal.1102112 schema:issn 0937-9347
    157 1613-7507
    158 schema:name Applied Magnetic Resonance
    159 schema:publisher Springer Nature
    160 rdf:type schema:Periodical
    161 sg:person.011737110415.43 schema:affiliation grid-institutes:grid.423485.c
    162 schema:familyName Osipov
    163 schema:givenName V. Yu.
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011737110415.43
    165 rdf:type schema:Person
    166 sg:person.01333775152.11 schema:affiliation grid-institutes:grid.423485.c
    167 schema:familyName Aleksenskiy
    168 schema:givenName A. E.
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333775152.11
    170 rdf:type schema:Person
    171 sg:person.014132507145.02 schema:affiliation grid-institutes:grid.423485.c
    172 schema:familyName Vul’
    173 schema:givenName A. Ya.
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014132507145.02
    175 rdf:type schema:Person
    176 sg:person.0766661012.63 schema:affiliation grid-institutes:grid.7489.2
    177 schema:familyName Panich
    178 schema:givenName A. M.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766661012.63
    180 rdf:type schema:Person
    181 sg:person.0775760400.49 schema:affiliation grid-institutes:grid.7489.2
    182 schema:familyName Shames
    183 schema:givenName A. I.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775760400.49
    185 rdf:type schema:Person
    186 sg:pub.10.1007/1-4020-3322-2_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010519525
    187 https://doi.org/10.1007/1-4020-3322-2_21
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nmat1018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001119303
    190 https://doi.org/10.1038/nmat1018
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1134/1.1711452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030925971
    193 https://doi.org/10.1134/1.1711452
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1140/epjb/e2006-00314-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005781766
    196 https://doi.org/10.1140/epjb/e2006-00314-7
    197 rdf:type schema:CreativeWork
    198 grid-institutes:grid.423485.c schema:alternateName Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia
    199 schema:name Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia
    200 rdf:type schema:Organization
    201 grid-institutes:grid.7489.2 schema:alternateName Department of Physics, Ben-Gurion University of the Negev, 84105, Be’er-Sheva, Israel
    202 The Ilan Ramon Youth Physics Center, Ben-Gurion University of the Negev, 84105, Be’er-Sheva, Israel
    203 schema:name Department of Physics, Ben-Gurion University of the Negev, 84105, Be’er-Sheva, Israel
    204 The Ilan Ramon Youth Physics Center, Ben-Gurion University of the Negev, 84105, Be’er-Sheva, Israel
    205 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...