Ontology type: schema:ScholarlyArticle
2009-10-30
AUTHORSA. M. Panich, A. I. Shames, O. Medvedev, V. Yu. Osipov, A. E. Aleksenskiy, A. Ya. Vul’
ABSTRACTWe report on electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) study of detonation nanodiamonds (DND) with the surface modified by copper and cobalt ions. The EMR spectrum of the pure DND sample shows an intense singlet originating from broken carbon bonds, while the spectra of copper- and cobalt-modified samples reveal additional signals with g > 2 and pronounced hyperfine structure (for copper). Increase in the Cu/Co concentration causes an increase of the corresponding EMR signals and broadening of the intense carbon-inherited singlet line. Subsequent annealing of the copper-modified samples in a hydrogen gas stream at 550 and 900°C causes narrowing of the singlet line and reduction of the Cu2+-related components. Applying the same annealing process to the cobalt-modified samples leads to broadening of the singlet line, reduction of Co2+ component and appearance of new intense low-field signals. NMR data correlate well with the EMR findings and yield information on interactions and locations of transition metal ions. 13C nuclear spin–lattice relaxation rate R1 in pure DND is driven by the interaction of nuclear spins with unpaired electron spins of broken bonds. Chemical modification of the DND surface by Cu and Co causes an increase in the relaxation rate, revealing appearance of paramagnetic Cu2+ and Co2+ complexes at the DND surface and their interaction with the carbon nuclear spins, both directly and via a coupling of Cu2+ and Co2+ electrons with those of the broken bonds. The aforementioned annealing of the Cu- and Co-DND results in an inverse process, i.e., a reduction of the relaxation rate, indicating that these complexes are destroyed and metal ions presumably join each other forming copper and cobalt nanoclusters. In the case of Co the nanoclusters are ferromagnetic, which results in the noticeable broadening of the 13C NMR lines. More... »
PAGES317
http://scigraph.springernature.com/pub.10.1007/s00723-009-0028-0
DOIhttp://dx.doi.org/10.1007/s00723-009-0028-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1022303908
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Inorganic Chemistry",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, Ben-Gurion University of the Negev, 84105, Be\u2019er-Sheva, Israel",
"id": "http://www.grid.ac/institutes/grid.7489.2",
"name": [
"Department of Physics, Ben-Gurion University of the Negev, 84105, Be\u2019er-Sheva, Israel"
],
"type": "Organization"
},
"familyName": "Panich",
"givenName": "A. M.",
"id": "sg:person.0766661012.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766661012.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, Ben-Gurion University of the Negev, 84105, Be\u2019er-Sheva, Israel",
"id": "http://www.grid.ac/institutes/grid.7489.2",
"name": [
"Department of Physics, Ben-Gurion University of the Negev, 84105, Be\u2019er-Sheva, Israel"
],
"type": "Organization"
},
"familyName": "Shames",
"givenName": "A. I.",
"id": "sg:person.0775760400.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775760400.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The Ilan Ramon Youth Physics Center, Ben-Gurion University of the Negev, 84105, Be\u2019er-Sheva, Israel",
"id": "http://www.grid.ac/institutes/grid.7489.2",
"name": [
"The Ilan Ramon Youth Physics Center, Ben-Gurion University of the Negev, 84105, Be\u2019er-Sheva, Israel"
],
"type": "Organization"
},
"familyName": "Medvedev",
"givenName": "O.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Osipov",
"givenName": "V. Yu.",
"id": "sg:person.011737110415.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011737110415.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Aleksenskiy",
"givenName": "A. E.",
"id": "sg:person.01333775152.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333775152.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Vul\u2019",
"givenName": "A. Ya.",
"id": "sg:person.014132507145.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014132507145.02"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nmat1018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001119303",
"https://doi.org/10.1038/nmat1018"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjb/e2006-00314-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005781766",
"https://doi.org/10.1140/epjb/e2006-00314-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/1-4020-3322-2_21",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010519525",
"https://doi.org/10.1007/1-4020-3322-2_21"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.1711452",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030925971",
"https://doi.org/10.1134/1.1711452"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-10-30",
"datePublishedReg": "2009-10-30",
"description": "We report on electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) study of detonation nanodiamonds (DND) with the surface modified by copper and cobalt ions. The EMR spectrum of the pure DND sample shows an intense singlet originating from broken carbon bonds, while the spectra of copper- and cobalt-modified samples reveal additional signals with g\u00a0>\u00a02 and pronounced hyperfine structure (for copper). Increase in the Cu/Co concentration causes an increase of the corresponding EMR signals and broadening of the intense carbon-inherited singlet line. Subsequent annealing of the copper-modified samples in a hydrogen gas stream at 550 and 900\u00b0C causes narrowing of the singlet line and reduction of the Cu2+-related components. Applying the same annealing process to the cobalt-modified samples leads to broadening of the singlet line, reduction of Co2+ component and appearance of new intense low-field signals. NMR data correlate well with the EMR findings and yield information on interactions and locations of transition metal ions. 13C nuclear spin\u2013lattice relaxation rate R1 in pure DND is driven by the interaction of nuclear spins with unpaired electron spins of broken bonds. Chemical modification of the DND surface by Cu and Co causes an increase in the relaxation rate, revealing appearance of paramagnetic Cu2+ and Co2+ complexes at the DND surface and their interaction with the carbon nuclear spins, both directly and via a coupling of Cu2+ and Co2+ electrons with those of the broken bonds. The aforementioned annealing of the Cu- and Co-DND results in an inverse process, i.e., a reduction of the relaxation rate, indicating that these complexes are destroyed and metal ions presumably join each other forming copper and cobalt nanoclusters. In the case of Co the nanoclusters are ferromagnetic, which results in the noticeable broadening of the 13C NMR lines.",
"genre": "article",
"id": "sg:pub.10.1007/s00723-009-0028-0",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.5367978",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1102112",
"issn": [
"0937-9347",
"1613-7507"
],
"name": "Applied Magnetic Resonance",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "36"
}
],
"keywords": [
"transition metal ions",
"metal ions",
"magnetic resonance studies",
"detonation nanodiamonds",
"electron magnetic resonance",
"DND surface",
"resonance studies",
"NMR data correlate",
"nuclear magnetic resonance studies",
"reduction of CO2",
"hydrogen gas stream",
"spectra of copper",
"unpaired electron spins",
"singlet line",
"low-field signal",
"paramagnetic Cu2",
"spin-lattice relaxation rate R1",
"case of CO",
"chemical modification",
"DND samples",
"cobalt ions",
"carbon bonds",
"broken carbon bonds",
"relaxation rate",
"broken bonds",
"NMR line",
"cobalt nanoclusters",
"Cu2",
"EMR spectra",
"ions",
"bonds",
"intense singlet",
"gas stream",
"noticeable broadening",
"copper",
"relaxation rate R1",
"nanoclusters",
"nuclear spins",
"nanodiamonds",
"magnetic resonance",
"CO",
"complexes",
"same annealing process",
"Cu",
"hyperfine structure",
"CO2",
"surface",
"CO concentration",
"spectra",
"annealing process",
"rate R1",
"subsequent annealing",
"electron spin",
"interaction",
"singlet",
"data correlate",
"broadening",
"electrons",
"samples",
"spin",
"annealing",
"resonance",
"R1",
"structure",
"modification",
"reduction",
"concentration",
"process",
"coupling",
"inverse process",
"additional signals",
"components",
"EMR signals",
"increase",
"streams",
"rate",
"study",
"signals",
"lines",
"appearance",
"information",
"cases",
"location",
"findings",
"correlates",
"cause"
],
"name": "Magnetic Resonance Study of Detonation Nanodiamonds with Surface Chemically Modified by Transition Metal Ions",
"pagination": "317",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1022303908"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00723-009-0028-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00723-009-0028-0",
"https://app.dimensions.ai/details/publication/pub.1022303908"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_484.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00723-009-0028-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00723-009-0028-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00723-009-0028-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00723-009-0028-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00723-009-0028-0'
This table displays all metadata directly associated to this object as RDF triples.
205 TRIPLES
22 PREDICATES
116 URIs
103 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00723-009-0028-0 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0302 |
3 | ″ | ″ | anzsrc-for:0306 |
4 | ″ | schema:author | N9bf285094c034eabbf443a1e2d094ed1 |
5 | ″ | schema:citation | sg:pub.10.1007/1-4020-3322-2_21 |
6 | ″ | ″ | sg:pub.10.1038/nmat1018 |
7 | ″ | ″ | sg:pub.10.1134/1.1711452 |
8 | ″ | ″ | sg:pub.10.1140/epjb/e2006-00314-7 |
9 | ″ | schema:datePublished | 2009-10-30 |
10 | ″ | schema:datePublishedReg | 2009-10-30 |
11 | ″ | schema:description | We report on electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) study of detonation nanodiamonds (DND) with the surface modified by copper and cobalt ions. The EMR spectrum of the pure DND sample shows an intense singlet originating from broken carbon bonds, while the spectra of copper- and cobalt-modified samples reveal additional signals with g > 2 and pronounced hyperfine structure (for copper). Increase in the Cu/Co concentration causes an increase of the corresponding EMR signals and broadening of the intense carbon-inherited singlet line. Subsequent annealing of the copper-modified samples in a hydrogen gas stream at 550 and 900°C causes narrowing of the singlet line and reduction of the Cu2+-related components. Applying the same annealing process to the cobalt-modified samples leads to broadening of the singlet line, reduction of Co2+ component and appearance of new intense low-field signals. NMR data correlate well with the EMR findings and yield information on interactions and locations of transition metal ions. 13C nuclear spin–lattice relaxation rate R1 in pure DND is driven by the interaction of nuclear spins with unpaired electron spins of broken bonds. Chemical modification of the DND surface by Cu and Co causes an increase in the relaxation rate, revealing appearance of paramagnetic Cu2+ and Co2+ complexes at the DND surface and their interaction with the carbon nuclear spins, both directly and via a coupling of Cu2+ and Co2+ electrons with those of the broken bonds. The aforementioned annealing of the Cu- and Co-DND results in an inverse process, i.e., a reduction of the relaxation rate, indicating that these complexes are destroyed and metal ions presumably join each other forming copper and cobalt nanoclusters. In the case of Co the nanoclusters are ferromagnetic, which results in the noticeable broadening of the 13C NMR lines. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N8052c0a3ad514ad18a9384eeac0fb428 |
16 | ″ | ″ | N8e0b09aaaae540188838b273a48f48a4 |
17 | ″ | ″ | sg:journal.1102112 |
18 | ″ | schema:keywords | CO |
19 | ″ | ″ | CO concentration |
20 | ″ | ″ | CO2 |
21 | ″ | ″ | Cu |
22 | ″ | ″ | Cu2 |
23 | ″ | ″ | DND samples |
24 | ″ | ″ | DND surface |
25 | ″ | ″ | EMR signals |
26 | ″ | ″ | EMR spectra |
27 | ″ | ″ | NMR data correlate |
28 | ″ | ″ | NMR line |
29 | ″ | ″ | R1 |
30 | ″ | ″ | additional signals |
31 | ″ | ″ | annealing |
32 | ″ | ″ | annealing process |
33 | ″ | ″ | appearance |
34 | ″ | ″ | bonds |
35 | ″ | ″ | broadening |
36 | ″ | ″ | broken bonds |
37 | ″ | ″ | broken carbon bonds |
38 | ″ | ″ | carbon bonds |
39 | ″ | ″ | case of CO |
40 | ″ | ″ | cases |
41 | ″ | ″ | cause |
42 | ″ | ″ | chemical modification |
43 | ″ | ″ | cobalt ions |
44 | ″ | ″ | cobalt nanoclusters |
45 | ″ | ″ | complexes |
46 | ″ | ″ | components |
47 | ″ | ″ | concentration |
48 | ″ | ″ | copper |
49 | ″ | ″ | correlates |
50 | ″ | ″ | coupling |
51 | ″ | ″ | data correlate |
52 | ″ | ″ | detonation nanodiamonds |
53 | ″ | ″ | electron magnetic resonance |
54 | ″ | ″ | electron spin |
55 | ″ | ″ | electrons |
56 | ″ | ″ | findings |
57 | ″ | ″ | gas stream |
58 | ″ | ″ | hydrogen gas stream |
59 | ″ | ″ | hyperfine structure |
60 | ″ | ″ | increase |
61 | ″ | ″ | information |
62 | ″ | ″ | intense singlet |
63 | ″ | ″ | interaction |
64 | ″ | ″ | inverse process |
65 | ″ | ″ | ions |
66 | ″ | ″ | lines |
67 | ″ | ″ | location |
68 | ″ | ″ | low-field signal |
69 | ″ | ″ | magnetic resonance |
70 | ″ | ″ | magnetic resonance studies |
71 | ″ | ″ | metal ions |
72 | ″ | ″ | modification |
73 | ″ | ″ | nanoclusters |
74 | ″ | ″ | nanodiamonds |
75 | ″ | ″ | noticeable broadening |
76 | ″ | ″ | nuclear magnetic resonance studies |
77 | ″ | ″ | nuclear spins |
78 | ″ | ″ | paramagnetic Cu2 |
79 | ″ | ″ | process |
80 | ″ | ″ | rate |
81 | ″ | ″ | rate R1 |
82 | ″ | ″ | reduction |
83 | ″ | ″ | reduction of CO2 |
84 | ″ | ″ | relaxation rate |
85 | ″ | ″ | relaxation rate R1 |
86 | ″ | ″ | resonance |
87 | ″ | ″ | resonance studies |
88 | ″ | ″ | same annealing process |
89 | ″ | ″ | samples |
90 | ″ | ″ | signals |
91 | ″ | ″ | singlet |
92 | ″ | ″ | singlet line |
93 | ″ | ″ | spectra |
94 | ″ | ″ | spectra of copper |
95 | ″ | ″ | spin |
96 | ″ | ″ | spin-lattice relaxation rate R1 |
97 | ″ | ″ | streams |
98 | ″ | ″ | structure |
99 | ″ | ″ | study |
100 | ″ | ″ | subsequent annealing |
101 | ″ | ″ | surface |
102 | ″ | ″ | transition metal ions |
103 | ″ | ″ | unpaired electron spins |
104 | ″ | schema:name | Magnetic Resonance Study of Detonation Nanodiamonds with Surface Chemically Modified by Transition Metal Ions |
105 | ″ | schema:pagination | 317 |
106 | ″ | schema:productId | N10bd6020c1284b6b9b5ab5d6f8091106 |
107 | ″ | ″ | Nd9543a2ed28743ea842abba5afd5dfba |
108 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022303908 |
109 | ″ | ″ | https://doi.org/10.1007/s00723-009-0028-0 |
110 | ″ | schema:sdDatePublished | 2022-05-20T07:25 |
111 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
112 | ″ | schema:sdPublisher | Nd30439733032404c9d8c60edf2ec97be |
113 | ″ | schema:url | https://doi.org/10.1007/s00723-009-0028-0 |
114 | ″ | sgo:license | sg:explorer/license/ |
115 | ″ | sgo:sdDataset | articles |
116 | ″ | rdf:type | schema:ScholarlyArticle |
117 | N10bd6020c1284b6b9b5ab5d6f8091106 | schema:name | dimensions_id |
118 | ″ | schema:value | pub.1022303908 |
119 | ″ | rdf:type | schema:PropertyValue |
120 | N270c3a5539d2483695987102dd5e4ce2 | schema:affiliation | grid-institutes:grid.7489.2 |
121 | ″ | schema:familyName | Medvedev |
122 | ″ | schema:givenName | O. |
123 | ″ | rdf:type | schema:Person |
124 | N296e47ed1cda41cf864a3b2f2657310d | rdf:first | sg:person.01333775152.11 |
125 | ″ | rdf:rest | Nfbbc02c1ba2147f2a9d081428fc3488e |
126 | N8052c0a3ad514ad18a9384eeac0fb428 | schema:issueNumber | 2-4 |
127 | ″ | rdf:type | schema:PublicationIssue |
128 | N86f18992bf72469db2ffc7cacef5552e | rdf:first | sg:person.0775760400.49 |
129 | ″ | rdf:rest | Nfa24afa7bd034b0e86b4bfb064a3ba55 |
130 | N8e0b09aaaae540188838b273a48f48a4 | schema:volumeNumber | 36 |
131 | ″ | rdf:type | schema:PublicationVolume |
132 | N9bf285094c034eabbf443a1e2d094ed1 | rdf:first | sg:person.0766661012.63 |
133 | ″ | rdf:rest | N86f18992bf72469db2ffc7cacef5552e |
134 | N9d3eb65019024e718266ef69f6f8ee17 | rdf:first | sg:person.011737110415.43 |
135 | ″ | rdf:rest | N296e47ed1cda41cf864a3b2f2657310d |
136 | Nd30439733032404c9d8c60edf2ec97be | schema:name | Springer Nature - SN SciGraph project |
137 | ″ | rdf:type | schema:Organization |
138 | Nd9543a2ed28743ea842abba5afd5dfba | schema:name | doi |
139 | ″ | schema:value | 10.1007/s00723-009-0028-0 |
140 | ″ | rdf:type | schema:PropertyValue |
141 | Nfa24afa7bd034b0e86b4bfb064a3ba55 | rdf:first | N270c3a5539d2483695987102dd5e4ce2 |
142 | ″ | rdf:rest | N9d3eb65019024e718266ef69f6f8ee17 |
143 | Nfbbc02c1ba2147f2a9d081428fc3488e | rdf:first | sg:person.014132507145.02 |
144 | ″ | rdf:rest | rdf:nil |
145 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
146 | ″ | schema:name | Chemical Sciences |
147 | ″ | rdf:type | schema:DefinedTerm |
148 | anzsrc-for:0302 | schema:inDefinedTermSet | anzsrc-for: |
149 | ″ | schema:name | Inorganic Chemistry |
150 | ″ | rdf:type | schema:DefinedTerm |
151 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
152 | ″ | schema:name | Physical Chemistry (incl. Structural) |
153 | ″ | rdf:type | schema:DefinedTerm |
154 | sg:grant.5367978 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00723-009-0028-0 |
155 | ″ | rdf:type | schema:MonetaryGrant |
156 | sg:journal.1102112 | schema:issn | 0937-9347 |
157 | ″ | ″ | 1613-7507 |
158 | ″ | schema:name | Applied Magnetic Resonance |
159 | ″ | schema:publisher | Springer Nature |
160 | ″ | rdf:type | schema:Periodical |
161 | sg:person.011737110415.43 | schema:affiliation | grid-institutes:grid.423485.c |
162 | ″ | schema:familyName | Osipov |
163 | ″ | schema:givenName | V. Yu. |
164 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011737110415.43 |
165 | ″ | rdf:type | schema:Person |
166 | sg:person.01333775152.11 | schema:affiliation | grid-institutes:grid.423485.c |
167 | ″ | schema:familyName | Aleksenskiy |
168 | ″ | schema:givenName | A. E. |
169 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333775152.11 |
170 | ″ | rdf:type | schema:Person |
171 | sg:person.014132507145.02 | schema:affiliation | grid-institutes:grid.423485.c |
172 | ″ | schema:familyName | Vul’ |
173 | ″ | schema:givenName | A. Ya. |
174 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014132507145.02 |
175 | ″ | rdf:type | schema:Person |
176 | sg:person.0766661012.63 | schema:affiliation | grid-institutes:grid.7489.2 |
177 | ″ | schema:familyName | Panich |
178 | ″ | schema:givenName | A. M. |
179 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766661012.63 |
180 | ″ | rdf:type | schema:Person |
181 | sg:person.0775760400.49 | schema:affiliation | grid-institutes:grid.7489.2 |
182 | ″ | schema:familyName | Shames |
183 | ″ | schema:givenName | A. I. |
184 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775760400.49 |
185 | ″ | rdf:type | schema:Person |
186 | sg:pub.10.1007/1-4020-3322-2_21 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010519525 |
187 | ″ | ″ | https://doi.org/10.1007/1-4020-3322-2_21 |
188 | ″ | rdf:type | schema:CreativeWork |
189 | sg:pub.10.1038/nmat1018 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001119303 |
190 | ″ | ″ | https://doi.org/10.1038/nmat1018 |
191 | ″ | rdf:type | schema:CreativeWork |
192 | sg:pub.10.1134/1.1711452 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030925971 |
193 | ″ | ″ | https://doi.org/10.1134/1.1711452 |
194 | ″ | rdf:type | schema:CreativeWork |
195 | sg:pub.10.1140/epjb/e2006-00314-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005781766 |
196 | ″ | ″ | https://doi.org/10.1140/epjb/e2006-00314-7 |
197 | ″ | rdf:type | schema:CreativeWork |
198 | grid-institutes:grid.423485.c | schema:alternateName | Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia |
199 | ″ | schema:name | Ioffe Physico-Technical Institute, 194021, St. Petersburg, Russia |
200 | ″ | rdf:type | schema:Organization |
201 | grid-institutes:grid.7489.2 | schema:alternateName | Department of Physics, Ben-Gurion University of the Negev, 84105, Be’er-Sheva, Israel |
202 | ″ | ″ | The Ilan Ramon Youth Physics Center, Ben-Gurion University of the Negev, 84105, Be’er-Sheva, Israel |
203 | ″ | schema:name | Department of Physics, Ben-Gurion University of the Negev, 84105, Be’er-Sheva, Israel |
204 | ″ | ″ | The Ilan Ramon Youth Physics Center, Ben-Gurion University of the Negev, 84105, Be’er-Sheva, Israel |
205 | ″ | rdf:type | schema:Organization |