Triterpenoid gene expression and phytochemical content in Iranian licorice under salinity stress View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-08

AUTHORS

Zahra Shirazi, Ali Aalami, Masoud Tohidfar, Mohammad Mehdi Sohani

ABSTRACT

Licorice is a well-known medicinal plant, containing various secondary metabolites of triterpenoid and phenolic families. The aim of this study is to evaluate the effect of salinity stress on the expression of key genes involved in the biosynthetic pathway of triterpenoids such as glycyrrhizin, betulinic acid, soyasaponins, and phytosterols in licorice root, as well as providing a phonemic platform to characterize antioxidant properties, glycyrrhizin, and total phenolic content. This study also includes measuring the gene expression level and glycyrrhizin content in leaves and roots of control plants. The studied genes included squalene synthase (SQS1 and SQS2), β-amyrin synthase (bAS), lupeol synthase (LUS), cycloartenol synthase (CAS), β-amyrin 11-oxidase (CYP88D6), and β-amyrin 24-hydroxylase (CYP93E6). Our results revealed that all of the mentioned genes were upregulated following the stress condition with different transcription rates. The highest increase (12-fold) was observed for the expression of the LUS gene, which is related to the betulinic acid pathway. Also, the highest content of glycyrrhizin was observed at 72 h post-treatment, which was consistent with the upregulated transcription levels of the glycyrrhizin pathway genes especially SQS1 and CYP88D6 at the same time. Correlation and stepwise regression analysis proved the key role of SQS1 gene in the biosynthetic pathway of glycyrrhizin. Antioxidant activity and phenolic content also were increased following stress condition. A comparison between the expression levels of SQS1 and other genes involved in the production of glycyrrhizin, phytosterols, and soyasaponins revealed a similar transcription trend, which shows the gene expression in the roots was significantly higher than the leaves. In contrast, SQS2 and LUS genes displayed a higher expression in leaf tissues. The genes related to betulinic acid biosynthetic pathway exhibited an expression rate different from other triterpenoid pathway genes, which could be observed in the leaves and roots of control plants and the roots of salt-treated plants. Furthermore, results showed that these two SQS genes have different expression rates due to different plant tissues (roots and leaves) and stress conditions. Importantly, in contrast to previous reports, we detected the glycyrrhizin in leaf tissues. This result may indicate the presence of a different genetic background in native Iranian licorice germplasm. More... »

PAGES

827-837

References to SciGraph publications

  • 2008-03-07. Ri-mediated Transformation of Glycyrrhiza uralensis with a Squalene Synthase Gene (GuSQS1) for Production of Glycyrrhizin in PLANT MOLECULAR BIOLOGY REPORTER
  • 2004-01. Anti-allergic activity of 18β-glycyrrhetinic acid-3-O-β-D-glucuronide in ARCHIVES OF PHARMACAL RESEARCH
  • 1998. Phenolic Constituents of Licorice (Glycyrrhiza Species) in FORSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE/PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS
  • 1988-12. Examination of triterpenoids produced by callus and cell suspension cultures of Glycyrrhiza glabra in PLANT CELL REPORTS
  • 2012-11-16. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L in BMC COMPLEMENTARY MEDICINE AND THERAPIES
  • 2009-05-29. Molecular Biology of Secondary Metabolism: Case Study for Glycyrrhiza Plants in RECENT ADVANCES IN PLANT BIOTECHNOLOGY
  • 2018-04-23. Metabolic Engineering of Glycyrrhizin Pathway by Over-Expression of Beta-amyrin 11-Oxidase in Transgenic Roots of Glycyrrhiza glabra in MOLECULAR BIOTECHNOLOGY
  • 2016-12-22. CYP716A179 functions as a triterpene C-28 oxidase in tissue-cultured stolons of Glycyrrhiza uralensis in PLANT CELL REPORTS
  • 2006-07. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch) in PLANT GROWTH REGULATION
  • 2010-07-07. Assessment of squalene synthase and beta-amyrin synthase gene expression in licorice roots treated with methyl jasmonate and salicylic acid using real-time qPCR in RUSSIAN JOURNAL OF PLANT PHYSIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00709-018-01340-4

    DOI

    http://dx.doi.org/10.1007/s00709-018-01340-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111259220

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30623261


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antioxidants", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glycyrrhiza", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glycyrrhizic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenols", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phytochemicals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Leaves", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Roots", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Messenger", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Regression Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Salt Stress", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Triterpenes", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, 4199613776, Rasht, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411872.9", 
              "name": [
                "Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, 4199613776, Rasht, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shirazi", 
            "givenName": "Zahra", 
            "id": "sg:person.011535465555.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535465555.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, 4199613776, Rasht, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411872.9", 
              "name": [
                "Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, 4199613776, Rasht, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aalami", 
            "givenName": "Ali", 
            "id": "sg:person.0704673460.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704673460.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Plant Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.412502.0", 
              "name": [
                "Department of Plant Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tohidfar", 
            "givenName": "Masoud", 
            "id": "sg:person.01126177703.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126177703.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, 4199613776, Rasht, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411872.9", 
              "name": [
                "Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, 4199613776, Rasht, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sohani", 
            "givenName": "Mohammad Mehdi", 
            "id": "sg:person.015670526623.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015670526623.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1472-6882-12-221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034772945", 
              "https://doi.org/10.1186/1472-6882-12-221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-0194-1_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028685078", 
              "https://doi.org/10.1007/978-1-4419-0194-1_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-016-2092-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048271490", 
              "https://doi.org/10.1007/s00299-016-2092-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11105-008-0018-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022104463", 
              "https://doi.org/10.1007/s11105-008-0018-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12033-018-0082-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103600256", 
              "https://doi.org/10.1007/s12033-018-0082-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7091-6480-8_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041901878", 
              "https://doi.org/10.1007/978-3-7091-6480-8_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00272743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046193684", 
              "https://doi.org/10.1007/bf00272743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10725-006-9101-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017594290", 
              "https://doi.org/10.1007/s10725-006-9101-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02980047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018569553", 
              "https://doi.org/10.1007/bf02980047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1021443710040047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014890033", 
              "https://doi.org/10.1134/s1021443710040047"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-08", 
        "datePublishedReg": "2019-01-08", 
        "description": "Licorice is a well-known medicinal plant, containing various secondary metabolites of triterpenoid and phenolic families. The aim of this study is to evaluate the effect of salinity stress on the expression of key genes involved in the biosynthetic pathway of triterpenoids such as glycyrrhizin, betulinic acid, soyasaponins, and phytosterols in licorice root, as well as providing a phonemic platform to characterize antioxidant properties, glycyrrhizin, and total phenolic content. This study also includes measuring the gene expression level and glycyrrhizin content in leaves and roots of control plants. The studied genes included squalene synthase (SQS1 and SQS2), \u03b2-amyrin synthase (bAS), lupeol synthase (LUS), cycloartenol synthase (CAS), \u03b2-amyrin 11-oxidase (CYP88D6), and \u03b2-amyrin 24-hydroxylase (CYP93E6). Our results revealed that all of the mentioned genes were upregulated following the stress condition with different transcription rates. The highest increase (12-fold) was observed for the expression of the LUS gene, which is related to the betulinic acid pathway. Also, the highest content of glycyrrhizin was observed at 72\u00a0h post-treatment, which was consistent with the upregulated transcription levels of the glycyrrhizin pathway genes especially SQS1 and CYP88D6 at the same time. Correlation and stepwise regression analysis proved the key role of SQS1 gene in the biosynthetic pathway of glycyrrhizin. Antioxidant activity and phenolic content also were increased following stress condition. A comparison between the expression levels of SQS1 and other genes involved in the production of glycyrrhizin, phytosterols, and soyasaponins revealed a similar transcription trend, which shows the gene expression in the roots was significantly higher than the leaves. In contrast, SQS2 and LUS genes displayed a higher expression in leaf tissues. The genes related to betulinic acid biosynthetic pathway exhibited an expression rate different from other triterpenoid pathway genes, which could be observed in the leaves and roots of control plants and the roots of salt-treated plants. Furthermore, results showed that these two SQS genes have different expression rates due to different plant tissues (roots and leaves) and stress conditions. Importantly, in contrast to previous reports, we detected the glycyrrhizin in leaf tissues. This result may indicate the presence of a different genetic background in native Iranian licorice germplasm.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00709-018-01340-4", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1118135", 
            "issn": [
              "0033-183X", 
              "1615-6102"
            ], 
            "name": "Protoplasma", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "256"
          }
        ], 
        "keywords": [
          "biosynthetic pathway", 
          "lupeol synthase", 
          "cycloartenol synthase", 
          "salinity stress", 
          "stress conditions", 
          "control plants", 
          "leaf tissue", 
          "pathway genes", 
          "gene expression", 
          "\u03b2-amyrin synthase", 
          "salt-treated plants", 
          "different plant tissues", 
          "expression levels", 
          "production of glycyrrhizin", 
          "gene expression levels", 
          "different transcription rates", 
          "different genetic backgrounds", 
          "SQS gene", 
          "key genes", 
          "plant tissues", 
          "squalene synthase", 
          "transcription rate", 
          "transcription levels", 
          "secondary metabolites", 
          "acid pathway", 
          "different expression rates", 
          "genes", 
          "genetic background", 
          "\u03b2-amyrin", 
          "plants", 
          "leaves", 
          "glycyrrhizin content", 
          "SQS1", 
          "synthase", 
          "pathway", 
          "high expression", 
          "expression", 
          "expression rate", 
          "roots", 
          "medicinal plants", 
          "key role", 
          "SQS2", 
          "germplasm", 
          "tissue", 
          "betulinic acid", 
          "phenolic families", 
          "CYP88D6", 
          "soyasaponins", 
          "stress", 
          "previous reports", 
          "triterpenoids", 
          "family", 
          "high content", 
          "contrast", 
          "phytosterols", 
          "metabolites", 
          "levels", 
          "content", 
          "acid", 
          "licorice root", 
          "role", 
          "production", 
          "licorice", 
          "activity", 
          "highest increase", 
          "phenolic content", 
          "phytochemical content", 
          "glycyrrhizin", 
          "conditions", 
          "antioxidant activity", 
          "antioxidant properties", 
          "presence", 
          "study", 
          "results", 
          "rate", 
          "analysis", 
          "increase", 
          "effect", 
          "total phenolic content", 
          "comparison", 
          "same time", 
          "background", 
          "correlation", 
          "platform", 
          "report", 
          "time", 
          "stepwise regression analysis", 
          "properties", 
          "trends", 
          "aim", 
          "regression analysis"
        ], 
        "name": "Triterpenoid gene expression and phytochemical content in Iranian licorice under salinity stress", 
        "pagination": "827-837", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111259220"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00709-018-01340-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30623261"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00709-018-01340-4", 
          "https://app.dimensions.ai/details/publication/pub.1111259220"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_813.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00709-018-01340-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00709-018-01340-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00709-018-01340-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00709-018-01340-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00709-018-01340-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    268 TRIPLES      21 PREDICATES      139 URIs      120 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00709-018-01340-4 schema:about N08d29cefb5974786967c7410c82c998f
    2 N1f18f1f8cc92456b9d79a1d04b0a43f3
    3 N26fe03ef75504b978cc75a60b8711c84
    4 N2b355e3e88d447dda99478fab032b038
    5 N81840a06ce784234bde55c825a530c23
    6 N8e95df79084c42339701ab01b8fa4a74
    7 N96ec01a3c37242e7917171f22ba0fd0d
    8 Naafe904bdf94493997b08726fe189e00
    9 Naf430ccc8ba74ff6bec5396e5a652464
    10 Nc427b15480e94f07af1580fbc738f544
    11 Nd96a7a1b05344612ac86ab06c740a9c2
    12 Ne110a6bfa4074dbeb75d3f63b3d8f6d6
    13 anzsrc-for:06
    14 anzsrc-for:0604
    15 anzsrc-for:0607
    16 schema:author N92abe32060564edc8fea89d8cbfff4e3
    17 schema:citation sg:pub.10.1007/978-1-4419-0194-1_5
    18 sg:pub.10.1007/978-3-7091-6480-8_1
    19 sg:pub.10.1007/bf00272743
    20 sg:pub.10.1007/bf02980047
    21 sg:pub.10.1007/s00299-016-2092-x
    22 sg:pub.10.1007/s10725-006-9101-y
    23 sg:pub.10.1007/s11105-008-0018-7
    24 sg:pub.10.1007/s12033-018-0082-7
    25 sg:pub.10.1134/s1021443710040047
    26 sg:pub.10.1186/1472-6882-12-221
    27 schema:datePublished 2019-01-08
    28 schema:datePublishedReg 2019-01-08
    29 schema:description Licorice is a well-known medicinal plant, containing various secondary metabolites of triterpenoid and phenolic families. The aim of this study is to evaluate the effect of salinity stress on the expression of key genes involved in the biosynthetic pathway of triterpenoids such as glycyrrhizin, betulinic acid, soyasaponins, and phytosterols in licorice root, as well as providing a phonemic platform to characterize antioxidant properties, glycyrrhizin, and total phenolic content. This study also includes measuring the gene expression level and glycyrrhizin content in leaves and roots of control plants. The studied genes included squalene synthase (SQS1 and SQS2), β-amyrin synthase (bAS), lupeol synthase (LUS), cycloartenol synthase (CAS), β-amyrin 11-oxidase (CYP88D6), and β-amyrin 24-hydroxylase (CYP93E6). Our results revealed that all of the mentioned genes were upregulated following the stress condition with different transcription rates. The highest increase (12-fold) was observed for the expression of the LUS gene, which is related to the betulinic acid pathway. Also, the highest content of glycyrrhizin was observed at 72 h post-treatment, which was consistent with the upregulated transcription levels of the glycyrrhizin pathway genes especially SQS1 and CYP88D6 at the same time. Correlation and stepwise regression analysis proved the key role of SQS1 gene in the biosynthetic pathway of glycyrrhizin. Antioxidant activity and phenolic content also were increased following stress condition. A comparison between the expression levels of SQS1 and other genes involved in the production of glycyrrhizin, phytosterols, and soyasaponins revealed a similar transcription trend, which shows the gene expression in the roots was significantly higher than the leaves. In contrast, SQS2 and LUS genes displayed a higher expression in leaf tissues. The genes related to betulinic acid biosynthetic pathway exhibited an expression rate different from other triterpenoid pathway genes, which could be observed in the leaves and roots of control plants and the roots of salt-treated plants. Furthermore, results showed that these two SQS genes have different expression rates due to different plant tissues (roots and leaves) and stress conditions. Importantly, in contrast to previous reports, we detected the glycyrrhizin in leaf tissues. This result may indicate the presence of a different genetic background in native Iranian licorice germplasm.
    30 schema:genre article
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N2038aa8bc88343bebab17aae1c5db19d
    33 Nb3348d26b4dc460f83c70fe6647a196d
    34 sg:journal.1118135
    35 schema:keywords CYP88D6
    36 SQS gene
    37 SQS1
    38 SQS2
    39 acid
    40 acid pathway
    41 activity
    42 aim
    43 analysis
    44 antioxidant activity
    45 antioxidant properties
    46 background
    47 betulinic acid
    48 biosynthetic pathway
    49 comparison
    50 conditions
    51 content
    52 contrast
    53 control plants
    54 correlation
    55 cycloartenol synthase
    56 different expression rates
    57 different genetic backgrounds
    58 different plant tissues
    59 different transcription rates
    60 effect
    61 expression
    62 expression levels
    63 expression rate
    64 family
    65 gene expression
    66 gene expression levels
    67 genes
    68 genetic background
    69 germplasm
    70 glycyrrhizin
    71 glycyrrhizin content
    72 high content
    73 high expression
    74 highest increase
    75 increase
    76 key genes
    77 key role
    78 leaf tissue
    79 leaves
    80 levels
    81 licorice
    82 licorice root
    83 lupeol synthase
    84 medicinal plants
    85 metabolites
    86 pathway
    87 pathway genes
    88 phenolic content
    89 phenolic families
    90 phytochemical content
    91 phytosterols
    92 plant tissues
    93 plants
    94 platform
    95 presence
    96 previous reports
    97 production
    98 production of glycyrrhizin
    99 properties
    100 rate
    101 regression analysis
    102 report
    103 results
    104 role
    105 roots
    106 salinity stress
    107 salt-treated plants
    108 same time
    109 secondary metabolites
    110 soyasaponins
    111 squalene synthase
    112 stepwise regression analysis
    113 stress
    114 stress conditions
    115 study
    116 synthase
    117 time
    118 tissue
    119 total phenolic content
    120 transcription levels
    121 transcription rate
    122 trends
    123 triterpenoids
    124 β-amyrin
    125 β-amyrin synthase
    126 schema:name Triterpenoid gene expression and phytochemical content in Iranian licorice under salinity stress
    127 schema:pagination 827-837
    128 schema:productId N0de51bf53dab4ff18e6bd4efe9ddddc8
    129 N52c4f87910b94de985fea4f9ba422772
    130 N79cf0be2e74245648b1f2731e797e6bc
    131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111259220
    132 https://doi.org/10.1007/s00709-018-01340-4
    133 schema:sdDatePublished 2022-11-24T21:04
    134 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    135 schema:sdPublisher N8c9077d619b94e158082eaa8a227fc12
    136 schema:url https://doi.org/10.1007/s00709-018-01340-4
    137 sgo:license sg:explorer/license/
    138 sgo:sdDataset articles
    139 rdf:type schema:ScholarlyArticle
    140 N08d29cefb5974786967c7410c82c998f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name RNA, Messenger
    142 rdf:type schema:DefinedTerm
    143 N0de51bf53dab4ff18e6bd4efe9ddddc8 schema:name pubmed_id
    144 schema:value 30623261
    145 rdf:type schema:PropertyValue
    146 N1f18f1f8cc92456b9d79a1d04b0a43f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Salt Stress
    148 rdf:type schema:DefinedTerm
    149 N2038aa8bc88343bebab17aae1c5db19d schema:issueNumber 3
    150 rdf:type schema:PublicationIssue
    151 N26fe03ef75504b978cc75a60b8711c84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Plant Roots
    153 rdf:type schema:DefinedTerm
    154 N2b355e3e88d447dda99478fab032b038 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Glycyrrhiza
    156 rdf:type schema:DefinedTerm
    157 N385abc7ecb814e4c8bc31904b199ec4a rdf:first sg:person.015670526623.33
    158 rdf:rest rdf:nil
    159 N52c4f87910b94de985fea4f9ba422772 schema:name doi
    160 schema:value 10.1007/s00709-018-01340-4
    161 rdf:type schema:PropertyValue
    162 N79cf0be2e74245648b1f2731e797e6bc schema:name dimensions_id
    163 schema:value pub.1111259220
    164 rdf:type schema:PropertyValue
    165 N7b48ea077e614a84b2c2c567c8869817 rdf:first sg:person.01126177703.58
    166 rdf:rest N385abc7ecb814e4c8bc31904b199ec4a
    167 N81840a06ce784234bde55c825a530c23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Antioxidants
    169 rdf:type schema:DefinedTerm
    170 N8c9077d619b94e158082eaa8a227fc12 schema:name Springer Nature - SN SciGraph project
    171 rdf:type schema:Organization
    172 N8e95df79084c42339701ab01b8fa4a74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Phytochemicals
    174 rdf:type schema:DefinedTerm
    175 N92abe32060564edc8fea89d8cbfff4e3 rdf:first sg:person.011535465555.86
    176 rdf:rest Nf2b67f2587854bb2939df9f8feafe4ef
    177 N96ec01a3c37242e7917171f22ba0fd0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Plant Leaves
    179 rdf:type schema:DefinedTerm
    180 Naafe904bdf94493997b08726fe189e00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Phenols
    182 rdf:type schema:DefinedTerm
    183 Naf430ccc8ba74ff6bec5396e5a652464 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Triterpenes
    185 rdf:type schema:DefinedTerm
    186 Nb3348d26b4dc460f83c70fe6647a196d schema:volumeNumber 256
    187 rdf:type schema:PublicationVolume
    188 Nc427b15480e94f07af1580fbc738f544 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Regression Analysis
    190 rdf:type schema:DefinedTerm
    191 Nd96a7a1b05344612ac86ab06c740a9c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Gene Expression Regulation, Plant
    193 rdf:type schema:DefinedTerm
    194 Ne110a6bfa4074dbeb75d3f63b3d8f6d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Glycyrrhizic Acid
    196 rdf:type schema:DefinedTerm
    197 Nf2b67f2587854bb2939df9f8feafe4ef rdf:first sg:person.0704673460.06
    198 rdf:rest N7b48ea077e614a84b2c2c567c8869817
    199 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    200 schema:name Biological Sciences
    201 rdf:type schema:DefinedTerm
    202 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    203 schema:name Genetics
    204 rdf:type schema:DefinedTerm
    205 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    206 schema:name Plant Biology
    207 rdf:type schema:DefinedTerm
    208 sg:journal.1118135 schema:issn 0033-183X
    209 1615-6102
    210 schema:name Protoplasma
    211 schema:publisher Springer Nature
    212 rdf:type schema:Periodical
    213 sg:person.01126177703.58 schema:affiliation grid-institutes:grid.412502.0
    214 schema:familyName Tohidfar
    215 schema:givenName Masoud
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126177703.58
    217 rdf:type schema:Person
    218 sg:person.011535465555.86 schema:affiliation grid-institutes:grid.411872.9
    219 schema:familyName Shirazi
    220 schema:givenName Zahra
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535465555.86
    222 rdf:type schema:Person
    223 sg:person.015670526623.33 schema:affiliation grid-institutes:grid.411872.9
    224 schema:familyName Sohani
    225 schema:givenName Mohammad Mehdi
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015670526623.33
    227 rdf:type schema:Person
    228 sg:person.0704673460.06 schema:affiliation grid-institutes:grid.411872.9
    229 schema:familyName Aalami
    230 schema:givenName Ali
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704673460.06
    232 rdf:type schema:Person
    233 sg:pub.10.1007/978-1-4419-0194-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028685078
    234 https://doi.org/10.1007/978-1-4419-0194-1_5
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/978-3-7091-6480-8_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041901878
    237 https://doi.org/10.1007/978-3-7091-6480-8_1
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/bf00272743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046193684
    240 https://doi.org/10.1007/bf00272743
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/bf02980047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018569553
    243 https://doi.org/10.1007/bf02980047
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s00299-016-2092-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048271490
    246 https://doi.org/10.1007/s00299-016-2092-x
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s10725-006-9101-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017594290
    249 https://doi.org/10.1007/s10725-006-9101-y
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s11105-008-0018-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022104463
    252 https://doi.org/10.1007/s11105-008-0018-7
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s12033-018-0082-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103600256
    255 https://doi.org/10.1007/s12033-018-0082-7
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1134/s1021443710040047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014890033
    258 https://doi.org/10.1134/s1021443710040047
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1186/1472-6882-12-221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034772945
    261 https://doi.org/10.1186/1472-6882-12-221
    262 rdf:type schema:CreativeWork
    263 grid-institutes:grid.411872.9 schema:alternateName Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, 4199613776, Rasht, Iran
    264 schema:name Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, 4199613776, Rasht, Iran
    265 rdf:type schema:Organization
    266 grid-institutes:grid.412502.0 schema:alternateName Department of Plant Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran
    267 schema:name Department of Plant Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran
    268 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...