Mathematical modeling of planar physically nonlinear inhomogeneous plates with rectangular cuts in the three-dimensional formulation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-16

AUTHORS

A. V. Krysko, J. Awrejcewicz, K. S. Bodyagina, V. A. Krysko

ABSTRACT

Mathematical models of planar physically nonlinear inhomogeneous plates with rectangular cuts are constructed based on the three-dimensional (3D) theory of elasticity, the Mises plasticity criterion, and Birger’s method of variable parameters. The theory is developed for arbitrary deformation diagrams, boundary conditions, transverse loads, and material inhomogeneities. Additionally, inhomogeneities in the form of holes of any size and shape are considered. The finite element method is employed to solve the problem, and the convergence of this method is examined. Finally, based on numerical experiments, the influence of various inhomogeneities in the plates on their stress–strain states under the action of static mechanical loads is presented and discussed. Results show that these imbalances existing with the plate’s structure lead to increased plastic deformation. More... »

PAGES

4933-4950

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00707-021-03096-0

DOI

http://dx.doi.org/10.1007/s00707-021-03096-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142626801


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scientific and Educational Center of Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Scientific and Educational Center of Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "A. V.", 
        "id": "sg:person.016017316223.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowskiego Str., 90-924, \u0141\u00f3d\u017a, Poland", 
          "id": "http://www.grid.ac/institutes/grid.412284.9", 
          "name": [
            "Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowskiego Str., 90-924, \u0141\u00f3d\u017a, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Awrejcewicz", 
        "givenName": "J.", 
        "id": "sg:person.012103132446.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya, 77, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya, 77, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bodyagina", 
        "givenName": "K. S.", 
        "id": "sg:person.013251622731.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013251622731.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya, 77, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya, 77, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "V. A.", 
        "id": "sg:person.015167266033.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13272-018-0339-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107954589", 
          "https://doi.org/10.1007/s13272-018-0339-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-021-03010-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1139176430", 
          "https://doi.org/10.1007/s00707-021-03010-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004660050187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018926893", 
          "https://doi.org/10.1007/s004660050187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40032-014-0138-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045512308", 
          "https://doi.org/10.1007/s40032-014-0138-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-16", 
    "datePublishedReg": "2021-11-16", 
    "description": "Mathematical models of planar physically nonlinear inhomogeneous plates with rectangular cuts are constructed based on the three-dimensional (3D) theory of elasticity, the Mises plasticity criterion, and Birger\u2019s method of variable parameters. The theory is developed for arbitrary deformation diagrams, boundary conditions, transverse loads, and material inhomogeneities. Additionally, inhomogeneities in the form of holes of any size and shape are considered. The finite element method is employed to solve the problem, and the convergence of this method is examined. Finally, based on numerical experiments, the influence of various inhomogeneities in the plates on their stress\u2013strain states under the action of static mechanical loads is presented and discussed. Results show that these imbalances existing with the plate\u2019s structure lead to increased plastic deformation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00707-021-03096-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8738719", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1044151", 
        "issn": [
          "0001-5970", 
          "1619-6937"
        ], 
        "name": "Acta Mechanica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "232"
      }
    ], 
    "keywords": [
      "rectangular cut", 
      "inhomogeneous plate", 
      "finite element method", 
      "static mechanical load", 
      "stress-strain state", 
      "three-dimensional formulation", 
      "deformation diagrams", 
      "plastic deformation", 
      "plasticity criterion", 
      "transverse load", 
      "element method", 
      "plate structures", 
      "material inhomogeneity", 
      "three-dimensional theory", 
      "mechanical load", 
      "form of holes", 
      "boundary conditions", 
      "variable parameters", 
      "mathematical model", 
      "mathematical modeling", 
      "load", 
      "plate", 
      "inhomogeneity", 
      "numerical experiments", 
      "deformation", 
      "method", 
      "planar", 
      "elasticity", 
      "structure", 
      "modeling", 
      "cut", 
      "parameters", 
      "shape", 
      "formulation", 
      "holes", 
      "diagram", 
      "influence", 
      "conditions", 
      "experiments", 
      "size", 
      "model", 
      "theory", 
      "results", 
      "problem", 
      "convergence", 
      "state", 
      "criteria", 
      "form", 
      "imbalance", 
      "action", 
      "Mises plasticity criterion", 
      "Birger\u2019s method", 
      "arbitrary deformation diagrams"
    ], 
    "name": "Mathematical modeling of planar physically nonlinear inhomogeneous plates with rectangular cuts in the three-dimensional formulation", 
    "pagination": "4933-4950", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142626801"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00707-021-03096-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00707-021-03096-0", 
      "https://app.dimensions.ai/details/publication/pub.1142626801"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_908.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00707-021-03096-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00707-021-03096-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00707-021-03096-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00707-021-03096-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00707-021-03096-0'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      82 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00707-021-03096-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N51d385b2f7954ddb93527a3f64b7f14a
4 schema:citation sg:pub.10.1007/s004660050187
5 sg:pub.10.1007/s00707-021-03010-8
6 sg:pub.10.1007/s13272-018-0339-7
7 sg:pub.10.1007/s40032-014-0138-9
8 schema:datePublished 2021-11-16
9 schema:datePublishedReg 2021-11-16
10 schema:description Mathematical models of planar physically nonlinear inhomogeneous plates with rectangular cuts are constructed based on the three-dimensional (3D) theory of elasticity, the Mises plasticity criterion, and Birger’s method of variable parameters. The theory is developed for arbitrary deformation diagrams, boundary conditions, transverse loads, and material inhomogeneities. Additionally, inhomogeneities in the form of holes of any size and shape are considered. The finite element method is employed to solve the problem, and the convergence of this method is examined. Finally, based on numerical experiments, the influence of various inhomogeneities in the plates on their stress–strain states under the action of static mechanical loads is presented and discussed. Results show that these imbalances existing with the plate’s structure lead to increased plastic deformation.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N0dd82024f312481dbf2fa62e4755ea06
15 N2331cf28c4ae47f1ad7936fa4c539e02
16 sg:journal.1044151
17 schema:keywords Birger’s method
18 Mises plasticity criterion
19 action
20 arbitrary deformation diagrams
21 boundary conditions
22 conditions
23 convergence
24 criteria
25 cut
26 deformation
27 deformation diagrams
28 diagram
29 elasticity
30 element method
31 experiments
32 finite element method
33 form
34 form of holes
35 formulation
36 holes
37 imbalance
38 influence
39 inhomogeneity
40 inhomogeneous plate
41 load
42 material inhomogeneity
43 mathematical model
44 mathematical modeling
45 mechanical load
46 method
47 model
48 modeling
49 numerical experiments
50 parameters
51 planar
52 plastic deformation
53 plasticity criterion
54 plate
55 plate structures
56 problem
57 rectangular cut
58 results
59 shape
60 size
61 state
62 static mechanical load
63 stress-strain state
64 structure
65 theory
66 three-dimensional formulation
67 three-dimensional theory
68 transverse load
69 variable parameters
70 schema:name Mathematical modeling of planar physically nonlinear inhomogeneous plates with rectangular cuts in the three-dimensional formulation
71 schema:pagination 4933-4950
72 schema:productId N7d79aa245f3940adabb06cf012981a86
73 N98676e0eaf694f3da3d7e9432d99b78b
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142626801
75 https://doi.org/10.1007/s00707-021-03096-0
76 schema:sdDatePublished 2022-01-01T18:59
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Nfa9aade2d77643339fecbd66ba4b0a50
79 schema:url https://doi.org/10.1007/s00707-021-03096-0
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N02e6a3f0a762400d9ffd1e0a87eb197f rdf:first sg:person.015167266033.92
84 rdf:rest rdf:nil
85 N0dd82024f312481dbf2fa62e4755ea06 schema:issueNumber 12
86 rdf:type schema:PublicationIssue
87 N2331cf28c4ae47f1ad7936fa4c539e02 schema:volumeNumber 232
88 rdf:type schema:PublicationVolume
89 N51d385b2f7954ddb93527a3f64b7f14a rdf:first sg:person.016017316223.58
90 rdf:rest N56a13ee4537944289b7e47bd790581e2
91 N56a13ee4537944289b7e47bd790581e2 rdf:first sg:person.012103132446.89
92 rdf:rest N8aec3119147b4960b5f6c6e436bca0bb
93 N7d79aa245f3940adabb06cf012981a86 schema:name doi
94 schema:value 10.1007/s00707-021-03096-0
95 rdf:type schema:PropertyValue
96 N8aec3119147b4960b5f6c6e436bca0bb rdf:first sg:person.013251622731.13
97 rdf:rest N02e6a3f0a762400d9ffd1e0a87eb197f
98 N98676e0eaf694f3da3d7e9432d99b78b schema:name dimensions_id
99 schema:value pub.1142626801
100 rdf:type schema:PropertyValue
101 Nfa9aade2d77643339fecbd66ba4b0a50 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
104 schema:name Mathematical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
107 schema:name Pure Mathematics
108 rdf:type schema:DefinedTerm
109 sg:grant.8738719 http://pending.schema.org/fundedItem sg:pub.10.1007/s00707-021-03096-0
110 rdf:type schema:MonetaryGrant
111 sg:journal.1044151 schema:issn 0001-5970
112 1619-6937
113 schema:name Acta Mechanica
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.012103132446.89 schema:affiliation grid-institutes:grid.412284.9
117 schema:familyName Awrejcewicz
118 schema:givenName J.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89
120 rdf:type schema:Person
121 sg:person.013251622731.13 schema:affiliation grid-institutes:grid.78837.33
122 schema:familyName Bodyagina
123 schema:givenName K. S.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013251622731.13
125 rdf:type schema:Person
126 sg:person.015167266033.92 schema:affiliation grid-institutes:grid.78837.33
127 schema:familyName Krysko
128 schema:givenName V. A.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92
130 rdf:type schema:Person
131 sg:person.016017316223.58 schema:affiliation grid-institutes:grid.78837.33
132 schema:familyName Krysko
133 schema:givenName A. V.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58
135 rdf:type schema:Person
136 sg:pub.10.1007/s004660050187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018926893
137 https://doi.org/10.1007/s004660050187
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00707-021-03010-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139176430
140 https://doi.org/10.1007/s00707-021-03010-8
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s13272-018-0339-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107954589
143 https://doi.org/10.1007/s13272-018-0339-7
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s40032-014-0138-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045512308
146 https://doi.org/10.1007/s40032-014-0138-9
147 rdf:type schema:CreativeWork
148 grid-institutes:grid.412284.9 schema:alternateName Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
149 schema:name Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
150 rdf:type schema:Organization
151 grid-institutes:grid.78837.33 schema:alternateName Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya, 77, 410054, Saratov, Russia
152 Scientific and Educational Center of Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia
153 schema:name Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya, 77, 410054, Saratov, Russia
154 Scientific and Educational Center of Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...