“Resonance” phenomenon of kinematic excitation by a spherical body in a semi-infinite cylindrical vessel filled with liquid View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Veniamin D. Kubenko, Ihor V. Yanchevskyi

ABSTRACT

A semi-infinite round cylindrical cavity filled with an ideal compressible fluid is considered. It contains a spherical body located close to its end. The body performs periodic motion with a specified frequency and amplitude. The problem of determining the acoustic field of velocities (pressure) in the fluid is solved depending on the character of excitation and geometrical parameters of the system. The study uses the method of separation of variables, translational addition theorems for spherical wave functions and relationships representing spherical wave functions in terms of cylindrical ones and vice versa. Such an approach satisfies all boundary conditions and yields an exact boundary problem solution. The computations are reduced to an infinite system of algebraic equations, the solution of which with the truncation method is asserted to converge. Determining the pressure and velocity fields has shown that the system being considered has several excitation frequencies, at which the acoustic characteristics exceed the excitation amplitude by several orders. These “resonance” frequencies differ from such frequencies inherent an infinite cylindrical waveguide with a spherical body in both cases. In this case, even when the radius of a spherical radiator is small and abnormal phenomena in an infinite vessel are weak they can manifest themselves substantially in a semi-infinite vessel. More... »

PAGES

1009-1025

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00707-018-2310-4

DOI

http://dx.doi.org/10.1007/s00707-018-2310-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110638675


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Theory of Vibration, S.P. Tymoshenko Institute of Mechanics of National Academy of Science of Ukraine, 3 Nesterova str., 03057, Kiev, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubenko", 
        "givenName": "Veniamin D.", 
        "id": "sg:person.014500064564.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014500064564.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Technical University of Ukraine Kiev Polytechnic Institute", 
          "id": "https://www.grid.ac/institutes/grid.440544.5", 
          "name": [
            "Department of Theoretical Mechanics, National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, 37, Peremohy Ave., 03056, Kiev, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yanchevskyi", 
        "givenName": "Ihor V.", 
        "id": "sg:person.011043273461.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011043273461.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10778-005-0004-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006789804", 
          "https://doi.org/10.1007/s10778-005-0004-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00883678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007840830", 
          "https://doi.org/10.1007/bf00883678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2007.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008263352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-003-0006-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010682523", 
          "https://doi.org/10.1007/s00707-003-0006-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1991.0066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029686048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10778-009-0195-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029819000", 
          "https://doi.org/10.1007/s10778-009-0195-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10778-009-0195-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029819000", 
          "https://doi.org/10.1007/s10778-009-0195-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfluidstructs.2006.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030082467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00887032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045559989", 
          "https://doi.org/10.1007/bf00887032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/132851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059347183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/60649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059348917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/qjmam/47.4.583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059985066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/qjmam/48.2.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059985083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.48.928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060448714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.48.928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060448714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.410126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062361415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.414447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062365735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.4739440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062382726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.15.000668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065092000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.5024361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101064397"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "A semi-infinite round cylindrical cavity filled with an ideal compressible fluid is considered. It contains a spherical body located close to its end. The body performs periodic motion with a specified frequency and amplitude. The problem of determining the acoustic field of velocities (pressure) in the fluid is solved depending on the character of excitation and geometrical parameters of the system. The study uses the method of separation of variables, translational addition theorems for spherical wave functions and relationships representing spherical wave functions in terms of cylindrical ones and vice versa. Such an approach satisfies all boundary conditions and yields an exact boundary problem solution. The computations are reduced to an infinite system of algebraic equations, the solution of which with the truncation method is asserted to converge. Determining the pressure and velocity fields has shown that the system being considered has several excitation frequencies, at which the acoustic characteristics exceed the excitation amplitude by several orders. These \u201cresonance\u201d frequencies differ from such frequencies inherent an infinite cylindrical waveguide with a spherical body in both cases. In this case, even when the radius of a spherical radiator is small and abnormal phenomena in an infinite vessel are weak they can manifest themselves substantially in a semi-infinite vessel.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00707-018-2310-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044151", 
        "issn": [
          "0001-5970", 
          "1619-6937"
        ], 
        "name": "Acta Mechanica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "230"
      }
    ], 
    "name": "\u201cResonance\u201d phenomenon of kinematic excitation by a spherical body in a semi-infinite cylindrical vessel filled with liquid", 
    "pagination": "1009-1025", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "30176a45d923849005c152b39e9ade5a1a483e8355e9845578f01dd07acec1f7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00707-018-2310-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110638675"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00707-018-2310-4", 
      "https://app.dimensions.ai/details/publication/pub.1110638675"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113664_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00707-018-2310-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00707-018-2310-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00707-018-2310-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00707-018-2310-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00707-018-2310-4'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00707-018-2310-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N18fc7f5834244fd2b5e2878459918dfe
4 schema:citation sg:pub.10.1007/bf00883678
5 sg:pub.10.1007/bf00887032
6 sg:pub.10.1007/s00707-003-0006-9
7 sg:pub.10.1007/s10778-005-0004-9
8 sg:pub.10.1007/s10778-009-0195-6
9 https://doi.org/10.1016/j.ijsolstr.2007.07.008
10 https://doi.org/10.1016/j.jfluidstructs.2006.02.002
11 https://doi.org/10.1090/qam/132851
12 https://doi.org/10.1090/qam/60649
13 https://doi.org/10.1093/qjmam/47.4.583
14 https://doi.org/10.1093/qjmam/48.2.211
15 https://doi.org/10.1098/rspa.1991.0066
16 https://doi.org/10.1103/physrev.48.928
17 https://doi.org/10.1121/1.410126
18 https://doi.org/10.1121/1.414447
19 https://doi.org/10.1121/1.4739440
20 https://doi.org/10.1121/1.5024361
21 https://doi.org/10.1364/ao.15.000668
22 schema:datePublished 2019-03
23 schema:datePublishedReg 2019-03-01
24 schema:description A semi-infinite round cylindrical cavity filled with an ideal compressible fluid is considered. It contains a spherical body located close to its end. The body performs periodic motion with a specified frequency and amplitude. The problem of determining the acoustic field of velocities (pressure) in the fluid is solved depending on the character of excitation and geometrical parameters of the system. The study uses the method of separation of variables, translational addition theorems for spherical wave functions and relationships representing spherical wave functions in terms of cylindrical ones and vice versa. Such an approach satisfies all boundary conditions and yields an exact boundary problem solution. The computations are reduced to an infinite system of algebraic equations, the solution of which with the truncation method is asserted to converge. Determining the pressure and velocity fields has shown that the system being considered has several excitation frequencies, at which the acoustic characteristics exceed the excitation amplitude by several orders. These “resonance” frequencies differ from such frequencies inherent an infinite cylindrical waveguide with a spherical body in both cases. In this case, even when the radius of a spherical radiator is small and abnormal phenomena in an infinite vessel are weak they can manifest themselves substantially in a semi-infinite vessel.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N4fc4068a29d54d659f51994569d8cfd8
29 Nf8d0e18c4c544387be44d8ee7f7fc1e3
30 sg:journal.1044151
31 schema:name “Resonance” phenomenon of kinematic excitation by a spherical body in a semi-infinite cylindrical vessel filled with liquid
32 schema:pagination 1009-1025
33 schema:productId Naf41f6d0cd9a4a18a7ea56a054d1fb4b
34 Nb7e75e34ea384501a21a4d594153183d
35 Nfa639007b6f9461884fbc1b87396a049
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110638675
37 https://doi.org/10.1007/s00707-018-2310-4
38 schema:sdDatePublished 2019-04-11T10:35
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N084f0cd86c43459b8f260748bf11d11d
41 schema:url https://link.springer.com/10.1007%2Fs00707-018-2310-4
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0357e49b15a5422689c7fc5e1cfad37d rdf:first sg:person.011043273461.73
46 rdf:rest rdf:nil
47 N05f7a5f5f83044428562e0ea0d9d09f2 schema:name Department of Theory of Vibration, S.P. Tymoshenko Institute of Mechanics of National Academy of Science of Ukraine, 3 Nesterova str., 03057, Kiev, Ukraine
48 rdf:type schema:Organization
49 N084f0cd86c43459b8f260748bf11d11d schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N18fc7f5834244fd2b5e2878459918dfe rdf:first sg:person.014500064564.13
52 rdf:rest N0357e49b15a5422689c7fc5e1cfad37d
53 N4fc4068a29d54d659f51994569d8cfd8 schema:issueNumber 3
54 rdf:type schema:PublicationIssue
55 Naf41f6d0cd9a4a18a7ea56a054d1fb4b schema:name dimensions_id
56 schema:value pub.1110638675
57 rdf:type schema:PropertyValue
58 Nb7e75e34ea384501a21a4d594153183d schema:name readcube_id
59 schema:value 30176a45d923849005c152b39e9ade5a1a483e8355e9845578f01dd07acec1f7
60 rdf:type schema:PropertyValue
61 Nf8d0e18c4c544387be44d8ee7f7fc1e3 schema:volumeNumber 230
62 rdf:type schema:PublicationVolume
63 Nfa639007b6f9461884fbc1b87396a049 schema:name doi
64 schema:value 10.1007/s00707-018-2310-4
65 rdf:type schema:PropertyValue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1044151 schema:issn 0001-5970
73 1619-6937
74 schema:name Acta Mechanica
75 rdf:type schema:Periodical
76 sg:person.011043273461.73 schema:affiliation https://www.grid.ac/institutes/grid.440544.5
77 schema:familyName Yanchevskyi
78 schema:givenName Ihor V.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011043273461.73
80 rdf:type schema:Person
81 sg:person.014500064564.13 schema:affiliation N05f7a5f5f83044428562e0ea0d9d09f2
82 schema:familyName Kubenko
83 schema:givenName Veniamin D.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014500064564.13
85 rdf:type schema:Person
86 sg:pub.10.1007/bf00883678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007840830
87 https://doi.org/10.1007/bf00883678
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf00887032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045559989
90 https://doi.org/10.1007/bf00887032
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s00707-003-0006-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010682523
93 https://doi.org/10.1007/s00707-003-0006-9
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s10778-005-0004-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006789804
96 https://doi.org/10.1007/s10778-005-0004-9
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s10778-009-0195-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029819000
99 https://doi.org/10.1007/s10778-009-0195-6
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.ijsolstr.2007.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008263352
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.jfluidstructs.2006.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030082467
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1090/qam/132851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059347183
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1090/qam/60649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059348917
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1093/qjmam/47.4.583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059985066
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1093/qjmam/48.2.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059985083
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1098/rspa.1991.0066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029686048
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrev.48.928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060448714
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1121/1.410126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062361415
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1121/1.414447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062365735
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1121/1.4739440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062382726
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1121/1.5024361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101064397
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1364/ao.15.000668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065092000
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.440544.5 schema:alternateName National Technical University of Ukraine Kiev Polytechnic Institute
128 schema:name Department of Theoretical Mechanics, National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, 37, Peremohy Ave., 03056, Kiev, Ukraine
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...