Critical points of the clamped–pinned elastica View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

P. Singh, V. G. A. Goss

ABSTRACT

We investigate equilibrium configurations of the clamped–pinned elastica where the pinned end can be displaced towards, and past, the clamped end. Solving the nonlinear ordinary differential equation for the clamped–pinned elastica for any mode in terms of elliptic integrals, we find sets of equations which govern the equilibrium configurations for given displacements. Equilibrium configurations for various displacements of the pinned end and any mode are obtained by numerically solving those sets of equations. A physical quantity, such as the force that arises in the elastica due to displacement of the pinned end, is taken to be a function of displacement. Although it is generally not possible to define a physical quantity as a function of displacement explicitly, an equation for the rate of change of this physical quantity with respect to displacement can be found by partial differentiation of the sets of equations which govern the equilibrium configurations. Setting that rate of change to zero provides a constraint equation for locating the critical points of that physical quantity. That constraint equation and the sets of equations which govern the equilibrium configurations are solved numerically to obtain the critical points of the physical quantity. Our procedure is demonstrated by finding local extrema on force–displacement plots (useful when analysing the stability of equilibrium configurations) and the maximum deflection of the elastica. Finally, we suggest how our procedure has scope for wider application. More... »

PAGES

1-18

Journal

TITLE

Acta Mechanica

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00707-018-2259-3

DOI

http://dx.doi.org/10.1007/s00707-018-2259-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107037932


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "London South Bank University", 
          "id": "https://www.grid.ac/institutes/grid.4756.0", 
          "name": [
            "School of Engineering, London South Bank University, SE1 OAA, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "P.", 
        "id": "sg:person.011477744353.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011477744353.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London South Bank University", 
          "id": "https://www.grid.ac/institutes/grid.4756.0", 
          "name": [
            "School of Engineering, London South Bank University, SE1 OAA, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goss", 
        "givenName": "V. G. A.", 
        "id": "sg:person.015215113553.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015215113553.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0020-7462(96)00125-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001678882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009105222", 
          "https://doi.org/10.1007/bf00275737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009105222", 
          "https://doi.org/10.1007/bf00275737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-1877-1_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020714222", 
          "https://doi.org/10.1007/978-3-7091-1877-1_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11191-008-9166-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023985301", 
          "https://doi.org/10.1007/s11191-008-9166-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechrescom.2015.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031345153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02428182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032582946", 
          "https://doi.org/10.1007/bf02428182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-006-0402-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037742874", 
          "https://doi.org/10.1007/s00707-006-0402-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-006-0402-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037742874", 
          "https://doi.org/10.1007/s00707-006-0402-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-013-0818-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040163176", 
          "https://doi.org/10.1007/s00707-013-0818-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7462(00)00114-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045739213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2015.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049124105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/jmes_jour_1961_003_021_02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064459169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/jmes_jour_1961_003_021_02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064459169"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "We investigate equilibrium configurations of the clamped\u2013pinned elastica where the pinned end can be displaced towards, and past, the clamped end. Solving the nonlinear ordinary differential equation for the clamped\u2013pinned elastica for any mode in terms of elliptic integrals, we find sets of equations which govern the equilibrium configurations for given displacements. Equilibrium configurations for various displacements of the pinned end and any mode are obtained by numerically solving those sets of equations. A physical quantity, such as the force that arises in the elastica due to displacement of the pinned end, is taken to be a function of displacement. Although it is generally not possible to define a physical quantity as a function of displacement explicitly, an equation for the rate of change of this physical quantity with respect to displacement can be found by partial differentiation of the sets of equations which govern the equilibrium configurations. Setting that rate of change to zero provides a constraint equation for locating the critical points of that physical quantity. That constraint equation and the sets of equations which govern the equilibrium configurations are solved numerically to obtain the critical points of the physical quantity. Our procedure is demonstrated by finding local extrema on force\u2013displacement plots (useful when analysing the stability of equilibrium configurations) and the maximum deflection of the elastica. Finally, we suggest how our procedure has scope for wider application.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00707-018-2259-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1044151", 
        "issn": [
          "0001-5970", 
          "1619-6937"
        ], 
        "name": "Acta Mechanica", 
        "type": "Periodical"
      }
    ], 
    "name": "Critical points of the clamped\u2013pinned elastica", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "941ddc1c87da3fae8415f5f5447d5c777134149eb0895ac90da30156356849bd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00707-018-2259-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107037932"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00707-018-2259-3", 
      "https://app.dimensions.ai/details/publication/pub.1107037932"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000526.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00707-018-2259-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00707-018-2259-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00707-018-2259-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00707-018-2259-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00707-018-2259-3'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      36 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00707-018-2259-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2d9bed83b2e54d93b0262ddca0ae5bfe
4 schema:citation sg:pub.10.1007/978-3-7091-1877-1_2
5 sg:pub.10.1007/bf00275737
6 sg:pub.10.1007/bf02428182
7 sg:pub.10.1007/s00707-006-0402-z
8 sg:pub.10.1007/s00707-013-0818-1
9 sg:pub.10.1007/s11191-008-9166-2
10 https://doi.org/10.1016/j.ijsolstr.2015.07.024
11 https://doi.org/10.1016/j.mechrescom.2015.04.009
12 https://doi.org/10.1016/s0020-7462(00)00114-1
13 https://doi.org/10.1016/s0020-7462(96)00125-4
14 https://doi.org/10.1243/jmes_jour_1961_003_021_02
15 schema:datePublished 2018-12
16 schema:datePublishedReg 2018-12-01
17 schema:description We investigate equilibrium configurations of the clamped–pinned elastica where the pinned end can be displaced towards, and past, the clamped end. Solving the nonlinear ordinary differential equation for the clamped–pinned elastica for any mode in terms of elliptic integrals, we find sets of equations which govern the equilibrium configurations for given displacements. Equilibrium configurations for various displacements of the pinned end and any mode are obtained by numerically solving those sets of equations. A physical quantity, such as the force that arises in the elastica due to displacement of the pinned end, is taken to be a function of displacement. Although it is generally not possible to define a physical quantity as a function of displacement explicitly, an equation for the rate of change of this physical quantity with respect to displacement can be found by partial differentiation of the sets of equations which govern the equilibrium configurations. Setting that rate of change to zero provides a constraint equation for locating the critical points of that physical quantity. That constraint equation and the sets of equations which govern the equilibrium configurations are solved numerically to obtain the critical points of the physical quantity. Our procedure is demonstrated by finding local extrema on force–displacement plots (useful when analysing the stability of equilibrium configurations) and the maximum deflection of the elastica. Finally, we suggest how our procedure has scope for wider application.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf sg:journal.1044151
22 schema:name Critical points of the clamped–pinned elastica
23 schema:pagination 1-18
24 schema:productId N55ef2e24766f4af699d1e010659319e6
25 N689f9d4643e9419c8532e8d7078a99c5
26 N806293739a934b01b49419cd565e5c96
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107037932
28 https://doi.org/10.1007/s00707-018-2259-3
29 schema:sdDatePublished 2019-04-10T22:35
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N9d5dde4dda984835bfec09cd6e8b5573
32 schema:url http://link.springer.com/10.1007%2Fs00707-018-2259-3
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N03f8f936462a497c9f157602c1a03a58 rdf:first sg:person.015215113553.55
37 rdf:rest rdf:nil
38 N2d9bed83b2e54d93b0262ddca0ae5bfe rdf:first sg:person.011477744353.18
39 rdf:rest N03f8f936462a497c9f157602c1a03a58
40 N55ef2e24766f4af699d1e010659319e6 schema:name readcube_id
41 schema:value 941ddc1c87da3fae8415f5f5447d5c777134149eb0895ac90da30156356849bd
42 rdf:type schema:PropertyValue
43 N689f9d4643e9419c8532e8d7078a99c5 schema:name doi
44 schema:value 10.1007/s00707-018-2259-3
45 rdf:type schema:PropertyValue
46 N806293739a934b01b49419cd565e5c96 schema:name dimensions_id
47 schema:value pub.1107037932
48 rdf:type schema:PropertyValue
49 N9d5dde4dda984835bfec09cd6e8b5573 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
55 schema:name Pure Mathematics
56 rdf:type schema:DefinedTerm
57 sg:journal.1044151 schema:issn 0001-5970
58 1619-6937
59 schema:name Acta Mechanica
60 rdf:type schema:Periodical
61 sg:person.011477744353.18 schema:affiliation https://www.grid.ac/institutes/grid.4756.0
62 schema:familyName Singh
63 schema:givenName P.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011477744353.18
65 rdf:type schema:Person
66 sg:person.015215113553.55 schema:affiliation https://www.grid.ac/institutes/grid.4756.0
67 schema:familyName Goss
68 schema:givenName V. G. A.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015215113553.55
70 rdf:type schema:Person
71 sg:pub.10.1007/978-3-7091-1877-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020714222
72 https://doi.org/10.1007/978-3-7091-1877-1_2
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf00275737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009105222
75 https://doi.org/10.1007/bf00275737
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02428182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032582946
78 https://doi.org/10.1007/bf02428182
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/s00707-006-0402-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037742874
81 https://doi.org/10.1007/s00707-006-0402-z
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/s00707-013-0818-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040163176
84 https://doi.org/10.1007/s00707-013-0818-1
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s11191-008-9166-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023985301
87 https://doi.org/10.1007/s11191-008-9166-2
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.ijsolstr.2015.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049124105
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.mechrescom.2015.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031345153
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s0020-7462(00)00114-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045739213
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/s0020-7462(96)00125-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001678882
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1243/jmes_jour_1961_003_021_02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064459169
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.4756.0 schema:alternateName London South Bank University
100 schema:name School of Engineering, London South Bank University, SE1 OAA, London, UK
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...