Uncertainty analysis for heat convection-diffusion problem with large uncertain-but-bounded parameters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-11

AUTHORS

Chong Wang, Zhiping Qiu, Xianjia Chen

ABSTRACT

To extend the restricted applicability of the traditional perturbation method with small uncertainty level, this paper presents a first-order subinterval parameter perturbation method (FSPPM) and a modified subinterval parameter perturbation method (MSPPM) to solve the heat convection-diffusion problem with large interval parameters in material properties, external loads and boundary conditions. Based on the subinterval theory, the original uncertain-but-bounded parameters with limited information are divided into several small subintervals. The eventual response interval is assembled by the interval union operation. In both methods, the Taylor series is used to approximate the interval matrix and vector. The inversion of interval matrix in FSPPM is evaluated by the first-order Neumann series, while the modified Neumann series with higher-order terms is proposed to calculate the interval matrix inverse in MSPPM. By comparing the results with the traditional Monte Carlo simulation, two numerical examples evidence the remarkable accuracy and effectiveness of the proposed methods at predicting an uncertain temperature field in engineering. More... »

PAGES

3831-3844

References to SciGraph publications

Journal

TITLE

Acta Mechanica

ISSUE

11

VOLUME

226

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00707-015-1441-0

DOI

http://dx.doi.org/10.1007/s00707-015-1441-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009636322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, School of Aeronautic Science and Engineering, Beihang University, 100191, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chong", 
        "id": "sg:person.012145241544.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012145241544.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, School of Aeronautic Science and Engineering, Beihang University, 100191, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Zhiping", 
        "id": "sg:person.014412456557.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, School of Aeronautic Science and Engineering, Beihang University, 100191, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xianjia", 
        "id": "sg:person.016003425471.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016003425471.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004033977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfluidstructs.2014.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005143102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-013-0975-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005527993", 
          "https://doi.org/10.1007/s00707-013-0975-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.strusafe.2010.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005778287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2010.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005783032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(03)00299-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(03)00299-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-0779(95)00065-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006726945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(65)90241-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013818383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2007.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021129018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-013-1009-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022721316", 
          "https://doi.org/10.1007/s00707-013-1009-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2009.08.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029680697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2010.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029781979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11433-013-5235-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030334588", 
          "https://doi.org/10.1007/s11433-013-5235-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(96)01168-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035058244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035126037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-005-0278-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039372332", 
          "https://doi.org/10.1007/s00707-005-0278-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-005-0278-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039372332", 
          "https://doi.org/10.1007/s00707-005-0278-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.finel.2011.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047526875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-007-0461-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047804375", 
          "https://doi.org/10.1007/s00707-007-0461-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-007-0461-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047804375", 
          "https://doi.org/10.1007/s00707-007-0461-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(96)01211-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050973357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02736398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051830324", 
          "https://doi.org/10.1007/bf02736398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02736398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051830324", 
          "https://doi.org/10.1007/bf02736398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.probengmech.2010.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052686098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)st.1943-541x.0000936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057642579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219876206000771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063007611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511810817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098732013"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11", 
    "datePublishedReg": "2015-11-01", 
    "description": "To extend the restricted applicability of the traditional perturbation method with small uncertainty level, this paper presents a first-order subinterval parameter perturbation method (FSPPM) and a modified subinterval parameter perturbation method (MSPPM) to solve the heat convection-diffusion problem with large interval parameters in material properties, external loads and boundary conditions. Based on the subinterval theory, the original uncertain-but-bounded parameters with limited information are divided into several small subintervals. The eventual response interval is assembled by the interval union operation. In both methods, the Taylor series is used to approximate the interval matrix and vector. The inversion of interval matrix in FSPPM is evaluated by the first-order Neumann series, while the modified Neumann series with higher-order terms is proposed to calculate the interval matrix inverse in MSPPM. By comparing the results with the traditional Monte Carlo simulation, two numerical examples evidence the remarkable accuracy and effectiveness of the proposed methods at predicting an uncertain temperature field in engineering.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00707-015-1441-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044151", 
        "issn": [
          "0001-5970", 
          "1619-6937"
        ], 
        "name": "Acta Mechanica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "226"
      }
    ], 
    "name": "Uncertainty analysis for heat convection-diffusion problem with large uncertain-but-bounded parameters", 
    "pagination": "3831-3844", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2de7b47bff50031b75aa20487202cfedbeec67254099f152fae6b293d445c231"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00707-015-1441-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009636322"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00707-015-1441-0", 
      "https://app.dimensions.ai/details/publication/pub.1009636322"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00707-015-1441-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00707-015-1441-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00707-015-1441-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00707-015-1441-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00707-015-1441-0'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00707-015-1441-0 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N934a9109302b4d8c8bcc50228eda7577
4 schema:citation sg:pub.10.1007/bf02736398
5 sg:pub.10.1007/s00707-005-0278-3
6 sg:pub.10.1007/s00707-007-0461-9
7 sg:pub.10.1007/s00707-013-0975-2
8 sg:pub.10.1007/s00707-013-1009-9
9 sg:pub.10.1007/s11433-013-5235-x
10 https://doi.org/10.1016/0960-0779(95)00065-8
11 https://doi.org/10.1016/j.cam.2009.08.086
12 https://doi.org/10.1016/j.cma.2007.06.022
13 https://doi.org/10.1016/j.cma.2010.07.019
14 https://doi.org/10.1016/j.cma.2010.08.011
15 https://doi.org/10.1016/j.finel.2011.09.012
16 https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.014
17 https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.033
18 https://doi.org/10.1016/j.jfluidstructs.2014.05.005
19 https://doi.org/10.1016/j.probengmech.2010.01.002
20 https://doi.org/10.1016/j.strusafe.2010.01.001
21 https://doi.org/10.1016/s0017-9310(03)00299-0
22 https://doi.org/10.1016/s0019-9958(65)90241-x
23 https://doi.org/10.1016/s0045-7825(96)01168-1
24 https://doi.org/10.1016/s0045-7825(96)01211-x
25 https://doi.org/10.1017/cbo9780511810817
26 https://doi.org/10.1061/(asce)st.1943-541x.0000936
27 https://doi.org/10.1142/s0219876206000771
28 https://doi.org/10.2514/2.164
29 schema:datePublished 2015-11
30 schema:datePublishedReg 2015-11-01
31 schema:description To extend the restricted applicability of the traditional perturbation method with small uncertainty level, this paper presents a first-order subinterval parameter perturbation method (FSPPM) and a modified subinterval parameter perturbation method (MSPPM) to solve the heat convection-diffusion problem with large interval parameters in material properties, external loads and boundary conditions. Based on the subinterval theory, the original uncertain-but-bounded parameters with limited information are divided into several small subintervals. The eventual response interval is assembled by the interval union operation. In both methods, the Taylor series is used to approximate the interval matrix and vector. The inversion of interval matrix in FSPPM is evaluated by the first-order Neumann series, while the modified Neumann series with higher-order terms is proposed to calculate the interval matrix inverse in MSPPM. By comparing the results with the traditional Monte Carlo simulation, two numerical examples evidence the remarkable accuracy and effectiveness of the proposed methods at predicting an uncertain temperature field in engineering.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N33032560d1a442dc900aa56610cea699
36 Nbc30760038ac4623b461141a953ce4a3
37 sg:journal.1044151
38 schema:name Uncertainty analysis for heat convection-diffusion problem with large uncertain-but-bounded parameters
39 schema:pagination 3831-3844
40 schema:productId N348e390f907343ea8fada77e1ca58208
41 N5bd5ce4892f748e6b36f0ad39e391c1e
42 Nb88b26aea55240ec9c705e162216f562
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009636322
44 https://doi.org/10.1007/s00707-015-1441-0
45 schema:sdDatePublished 2019-04-10T13:15
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N0d4c695a0c1245818e8be057e3a00a29
48 schema:url http://link.springer.com/10.1007%2Fs00707-015-1441-0
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N058000e4d6d84b828f5f2d0c9492c39f rdf:first sg:person.014412456557.05
53 rdf:rest N0625ba0d2b7243cf81e4e9d6ab03b8be
54 N0625ba0d2b7243cf81e4e9d6ab03b8be rdf:first sg:person.016003425471.41
55 rdf:rest rdf:nil
56 N0d4c695a0c1245818e8be057e3a00a29 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N33032560d1a442dc900aa56610cea699 schema:issueNumber 11
59 rdf:type schema:PublicationIssue
60 N348e390f907343ea8fada77e1ca58208 schema:name dimensions_id
61 schema:value pub.1009636322
62 rdf:type schema:PropertyValue
63 N5bd5ce4892f748e6b36f0ad39e391c1e schema:name doi
64 schema:value 10.1007/s00707-015-1441-0
65 rdf:type schema:PropertyValue
66 N934a9109302b4d8c8bcc50228eda7577 rdf:first sg:person.012145241544.37
67 rdf:rest N058000e4d6d84b828f5f2d0c9492c39f
68 Nb88b26aea55240ec9c705e162216f562 schema:name readcube_id
69 schema:value 2de7b47bff50031b75aa20487202cfedbeec67254099f152fae6b293d445c231
70 rdf:type schema:PropertyValue
71 Nbc30760038ac4623b461141a953ce4a3 schema:volumeNumber 226
72 rdf:type schema:PublicationVolume
73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
74 schema:name Engineering
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
77 schema:name Interdisciplinary Engineering
78 rdf:type schema:DefinedTerm
79 sg:journal.1044151 schema:issn 0001-5970
80 1619-6937
81 schema:name Acta Mechanica
82 rdf:type schema:Periodical
83 sg:person.012145241544.37 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
84 schema:familyName Wang
85 schema:givenName Chong
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012145241544.37
87 rdf:type schema:Person
88 sg:person.014412456557.05 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
89 schema:familyName Qiu
90 schema:givenName Zhiping
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05
92 rdf:type schema:Person
93 sg:person.016003425471.41 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
94 schema:familyName Chen
95 schema:givenName Xianjia
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016003425471.41
97 rdf:type schema:Person
98 sg:pub.10.1007/bf02736398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051830324
99 https://doi.org/10.1007/bf02736398
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s00707-005-0278-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039372332
102 https://doi.org/10.1007/s00707-005-0278-3
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00707-007-0461-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047804375
105 https://doi.org/10.1007/s00707-007-0461-9
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00707-013-0975-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005527993
108 https://doi.org/10.1007/s00707-013-0975-2
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00707-013-1009-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022721316
111 https://doi.org/10.1007/s00707-013-1009-9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11433-013-5235-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030334588
114 https://doi.org/10.1007/s11433-013-5235-x
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0960-0779(95)00065-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006726945
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.cam.2009.08.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029680697
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.cma.2007.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021129018
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.cma.2010.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029781979
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.cma.2010.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005783032
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.finel.2011.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047526875
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004033977
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035126037
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jfluidstructs.2014.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005143102
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.probengmech.2010.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052686098
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.strusafe.2010.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005778287
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0017-9310(03)00299-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006120921
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0019-9958(65)90241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640697
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0045-7825(96)01168-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035058244
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0045-7825(96)01211-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050973357
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1017/cbo9780511810817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098732013
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1061/(asce)st.1943-541x.0000936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057642579
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1142/s0219876206000771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063007611
151 rdf:type schema:CreativeWork
152 https://doi.org/10.2514/2.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013818383
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.64939.31 schema:alternateName Beihang University
155 schema:name Institute of Solid Mechanics, School of Aeronautic Science and Engineering, Beihang University, 100191, Beijing, People’s Republic of China
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...