On the motion of superparamagnetic particles in magnetic drug targeting View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-03

AUTHORS

Pengtao Yue, Shernita Lee, Shahriar Afkhami, Yuriko Renardy

ABSTRACT

A stochastic ODE model is developed for the motion of a superparamagnetic cluster suspended in a Hagen-Poiseuille flow and guided by an external magnet to travel to a target. The specific application is magnetic drug targeting, with clusters in the range of 10–200 nm radii. As a first approximation, we use a magnetic dipole model for the external magnet and focus on a venule of 10−4 m radius close to the surface of the skin as the pathway for the clusters. The time of arrival at the target is calculated numerically. Variations in release position, background flow, magnetic field strength, number of clusters, and stochastic effects are assessed. The capture rate is found to depend weakly on variations in the velocity profile, and strongly on the cluster size, the magnetic moment, and the distance between the magnet and the blood vessel wall. A useful condition is derived for the optimal capture rate. The case of simultaneous release of many clusters is investigated. Their accumulation in a neighborhood of the target at the venule wall follows a normal distribution with the standard deviation roughly half of the distance between the magnet and the target. Ideally, this deviation should equal the tumor radius, and the magnet should be beneath the center of the tumor. The optimal injection site for a cluster is found to be just prior to arrival at the target. Two separate mechanisms for capturing a cluster are the magnetic force and, for radii smaller than 20 nm, Brownian motion. For the latter case, the capture rate is enhanced by Brownian motion when the cluster is released near the wall. More... »

PAGES

505-527

References to SciGraph publications

Journal

TITLE

Acta Mechanica

ISSUE

3

VOLUME

223

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00707-011-0577-9

DOI

http://dx.doi.org/10.1007/s00707-011-0577-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015944682


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Department of Mathematics, Virginia Tech, 460 McBryde Hall, 24061-0123, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yue", 
        "givenName": "Pengtao", 
        "id": "sg:person.01031266044.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031266044.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Interdisciplinary Program for Genetics, Bioinformatics and Computational Biology, Virginia Tech, 24061, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Shernita", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New Jersey Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.260896.3", 
          "name": [
            "Department of Mathematical Sciences, New Jersey Institute of Technology, 07102, Newark, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Afkhami", 
        "givenName": "Shahriar", 
        "id": "sg:person.01066175562.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066175562.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Department of Mathematics, Virginia Tech, 460 McBryde Hall, 24061-0123, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Renardy", 
        "givenName": "Yuriko", 
        "id": "sg:person.012023742002.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012023742002.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.crhy.2007.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000725975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2007.08.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007638056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(00)01265-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009171753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2010.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010127382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2009.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010735491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2006.10.1195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011000082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2009.02.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011009605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2005.01.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013612591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9290(02)00034-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017760431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/42/22/224001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019237761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/42/22/224001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019237761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2009.02.094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019282589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-009-9786-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020111967", 
          "https://doi.org/10.1007/s10439-009-9786-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-009-9786-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020111967", 
          "https://doi.org/10.1007/s10439-009-9786-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-009-9786-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020111967", 
          "https://doi.org/10.1007/s10439-009-9786-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-009-9615-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022164843", 
          "https://doi.org/10.1007/s11051-009-9615-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-009-9615-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022164843", 
          "https://doi.org/10.1007/s11051-009-9615-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.2009.04089.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024435177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.2009.04089.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024435177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2005.02.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024535713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wnan.92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024818581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2009.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027484424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2005.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028830295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.2000.6542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034893260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/nnm.10.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035771704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/42/22/224003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036256860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/42/22/224003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036256860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ddr.20067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036661332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/42/22/224002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041597236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/42/22/224002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041597236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nano.2009.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044608854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2006.10.1174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044791198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2011.01.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048014336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1678/rheology.38.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051510662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/36/13/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052880124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112010003551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053769521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112010003551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053769521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112008002589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053958866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112008002589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053958866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm2009048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055414352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm2009048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055414352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm702730p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055416002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm702730p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055416002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la035540z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056146216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la035540z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056146216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la703146y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056161979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la703146y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056161979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2040307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057836471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.016302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.016302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasc.2005.869666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061506426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.2815690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062172860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144500378302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074739239", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.1986.250.5.h828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079908358"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-03", 
    "datePublishedReg": "2012-03-01", 
    "description": "A stochastic ODE model is developed for the motion of a superparamagnetic cluster suspended in a Hagen-Poiseuille flow and guided by an external magnet to travel to a target. The specific application is magnetic drug targeting, with clusters in the range of 10\u2013200 nm radii. As a first approximation, we use a magnetic dipole model for the external magnet and focus on a venule of 10\u22124 m radius close to the surface of the skin as the pathway for the clusters. The time of arrival at the target is calculated numerically. Variations in release position, background flow, magnetic field strength, number of clusters, and stochastic effects are assessed. The capture rate is found to depend weakly on variations in the velocity profile, and strongly on the cluster size, the magnetic moment, and the distance between the magnet and the blood vessel wall. A useful condition is derived for the optimal capture rate. The case of simultaneous release of many clusters is investigated. Their accumulation in a neighborhood of the target at the venule wall follows a normal distribution with the standard deviation roughly half of the distance between the magnet and the target. Ideally, this deviation should equal the tumor radius, and the magnet should be beneath the center of the tumor. The optimal injection site for a cluster is found to be just prior to arrival at the target. Two separate mechanisms for capturing a cluster are the magnetic force and, for radii smaller than 20 nm, Brownian motion. For the latter case, the capture rate is enhanced by Brownian motion when the cluster is released near the wall.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00707-011-0577-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044151", 
        "issn": [
          "0001-5970", 
          "1619-6937"
        ], 
        "name": "Acta Mechanica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "223"
      }
    ], 
    "name": "On the motion of superparamagnetic particles in magnetic drug targeting", 
    "pagination": "505-527", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4bf94d9df4fef04f73e4cd73d59ae11d3026382e8ee4cc75ef7e0064d91b20dc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00707-011-0577-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015944682"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00707-011-0577-9", 
      "https://app.dimensions.ai/details/publication/pub.1015944682"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00707-011-0577-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00707-011-0577-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00707-011-0577-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00707-011-0577-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00707-011-0577-9'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00707-011-0577-9 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nbff26787bacf4898aae5cf54364b694c
4 schema:citation sg:pub.10.1007/s10439-009-9786-y
5 sg:pub.10.1007/s11051-009-9615-0
6 https://app.dimensions.ai/details/publication/pub.1074739239
7 https://doi.org/10.1002/ddr.20067
8 https://doi.org/10.1002/wnan.92
9 https://doi.org/10.1006/jcph.2000.6542
10 https://doi.org/10.1016/j.biomaterials.2007.08.050
11 https://doi.org/10.1016/j.crhy.2007.04.009
12 https://doi.org/10.1016/j.jmmm.2005.01.064
13 https://doi.org/10.1016/j.jmmm.2005.02.040
14 https://doi.org/10.1016/j.jmmm.2005.08.015
15 https://doi.org/10.1016/j.jmmm.2006.10.1174
16 https://doi.org/10.1016/j.jmmm.2006.10.1195
17 https://doi.org/10.1016/j.jmmm.2009.02.046
18 https://doi.org/10.1016/j.jmmm.2009.02.094
19 https://doi.org/10.1016/j.jmmm.2009.12.010
20 https://doi.org/10.1016/j.jmmm.2010.09.008
21 https://doi.org/10.1016/j.nano.2009.04.008
22 https://doi.org/10.1016/j.polymer.2009.11.022
23 https://doi.org/10.1016/j.polymer.2011.01.047
24 https://doi.org/10.1016/s0021-9290(02)00034-9
25 https://doi.org/10.1016/s0304-8853(00)01265-8
26 https://doi.org/10.1017/s0022112008002589
27 https://doi.org/10.1017/s0022112010003551
28 https://doi.org/10.1021/cm2009048
29 https://doi.org/10.1021/cm702730p
30 https://doi.org/10.1021/la035540z
31 https://doi.org/10.1021/la703146y
32 https://doi.org/10.1063/1.2040307
33 https://doi.org/10.1088/0022-3727/36/13/201
34 https://doi.org/10.1088/0022-3727/42/22/224001
35 https://doi.org/10.1088/0022-3727/42/22/224002
36 https://doi.org/10.1088/0022-3727/42/22/224003
37 https://doi.org/10.1103/physreve.80.016302
38 https://doi.org/10.1109/tasc.2005.869666
39 https://doi.org/10.1111/j.1749-6632.2009.04089.x
40 https://doi.org/10.1116/1.2815690
41 https://doi.org/10.1137/s0036144500378302
42 https://doi.org/10.1152/ajpheart.1986.250.5.h828
43 https://doi.org/10.1678/rheology.38.23
44 https://doi.org/10.2217/nnm.10.104
45 schema:datePublished 2012-03
46 schema:datePublishedReg 2012-03-01
47 schema:description A stochastic ODE model is developed for the motion of a superparamagnetic cluster suspended in a Hagen-Poiseuille flow and guided by an external magnet to travel to a target. The specific application is magnetic drug targeting, with clusters in the range of 10–200 nm radii. As a first approximation, we use a magnetic dipole model for the external magnet and focus on a venule of 10−4 m radius close to the surface of the skin as the pathway for the clusters. The time of arrival at the target is calculated numerically. Variations in release position, background flow, magnetic field strength, number of clusters, and stochastic effects are assessed. The capture rate is found to depend weakly on variations in the velocity profile, and strongly on the cluster size, the magnetic moment, and the distance between the magnet and the blood vessel wall. A useful condition is derived for the optimal capture rate. The case of simultaneous release of many clusters is investigated. Their accumulation in a neighborhood of the target at the venule wall follows a normal distribution with the standard deviation roughly half of the distance between the magnet and the target. Ideally, this deviation should equal the tumor radius, and the magnet should be beneath the center of the tumor. The optimal injection site for a cluster is found to be just prior to arrival at the target. Two separate mechanisms for capturing a cluster are the magnetic force and, for radii smaller than 20 nm, Brownian motion. For the latter case, the capture rate is enhanced by Brownian motion when the cluster is released near the wall.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N1da452bccf434071ae4db64db552eaf4
52 N4050887083dc4213868ae28a4944f49c
53 sg:journal.1044151
54 schema:name On the motion of superparamagnetic particles in magnetic drug targeting
55 schema:pagination 505-527
56 schema:productId N8e601e8f68df4c45a96c782e239a781e
57 N98f0b327af63474faf06036698686147
58 Naf6c5f54f41e4e2588e941c63e30cf56
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015944682
60 https://doi.org/10.1007/s00707-011-0577-9
61 schema:sdDatePublished 2019-04-11T01:53
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N6deb47d3c2754d7e9be7d8ed1a19a51f
64 schema:url http://link.springer.com/10.1007/s00707-011-0577-9
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N1da452bccf434071ae4db64db552eaf4 schema:issueNumber 3
69 rdf:type schema:PublicationIssue
70 N4050887083dc4213868ae28a4944f49c schema:volumeNumber 223
71 rdf:type schema:PublicationVolume
72 N69dbd83d311d460c9b49b971ca2aed64 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
73 schema:familyName Lee
74 schema:givenName Shernita
75 rdf:type schema:Person
76 N6deb47d3c2754d7e9be7d8ed1a19a51f schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N82fdddc31d014dfb8351f271372c7918 rdf:first N69dbd83d311d460c9b49b971ca2aed64
79 rdf:rest Ne0b90877a05a42639e475bbc10781187
80 N8e601e8f68df4c45a96c782e239a781e schema:name doi
81 schema:value 10.1007/s00707-011-0577-9
82 rdf:type schema:PropertyValue
83 N98f0b327af63474faf06036698686147 schema:name readcube_id
84 schema:value 4bf94d9df4fef04f73e4cd73d59ae11d3026382e8ee4cc75ef7e0064d91b20dc
85 rdf:type schema:PropertyValue
86 Naf6c5f54f41e4e2588e941c63e30cf56 schema:name dimensions_id
87 schema:value pub.1015944682
88 rdf:type schema:PropertyValue
89 Nbff26787bacf4898aae5cf54364b694c rdf:first sg:person.01031266044.25
90 rdf:rest N82fdddc31d014dfb8351f271372c7918
91 Ne0b90877a05a42639e475bbc10781187 rdf:first sg:person.01066175562.39
92 rdf:rest Neddd4809108c47d7bda1221d1fb21aef
93 Neddd4809108c47d7bda1221d1fb21aef rdf:first sg:person.012023742002.41
94 rdf:rest rdf:nil
95 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
96 schema:name Mathematical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
99 schema:name Statistics
100 rdf:type schema:DefinedTerm
101 sg:journal.1044151 schema:issn 0001-5970
102 1619-6937
103 schema:name Acta Mechanica
104 rdf:type schema:Periodical
105 sg:person.01031266044.25 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
106 schema:familyName Yue
107 schema:givenName Pengtao
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031266044.25
109 rdf:type schema:Person
110 sg:person.01066175562.39 schema:affiliation https://www.grid.ac/institutes/grid.260896.3
111 schema:familyName Afkhami
112 schema:givenName Shahriar
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066175562.39
114 rdf:type schema:Person
115 sg:person.012023742002.41 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
116 schema:familyName Renardy
117 schema:givenName Yuriko
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012023742002.41
119 rdf:type schema:Person
120 sg:pub.10.1007/s10439-009-9786-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020111967
121 https://doi.org/10.1007/s10439-009-9786-y
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11051-009-9615-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022164843
124 https://doi.org/10.1007/s11051-009-9615-0
125 rdf:type schema:CreativeWork
126 https://app.dimensions.ai/details/publication/pub.1074739239 schema:CreativeWork
127 https://doi.org/10.1002/ddr.20067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036661332
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/wnan.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024818581
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1006/jcph.2000.6542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034893260
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.biomaterials.2007.08.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007638056
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.crhy.2007.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000725975
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jmmm.2005.01.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013612591
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jmmm.2005.02.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024535713
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jmmm.2005.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028830295
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jmmm.2006.10.1174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044791198
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jmmm.2006.10.1195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011000082
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jmmm.2009.02.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011009605
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jmmm.2009.02.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019282589
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jmmm.2009.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027484424
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.jmmm.2010.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010127382
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.nano.2009.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044608854
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.polymer.2009.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010735491
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.polymer.2011.01.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048014336
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0021-9290(02)00034-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017760431
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0304-8853(00)01265-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009171753
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1017/s0022112008002589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053958866
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1017/s0022112010003551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053769521
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/cm2009048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055414352
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/cm702730p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055416002
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1021/la035540z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056146216
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1021/la703146y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056161979
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1063/1.2040307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057836471
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1088/0022-3727/36/13/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052880124
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1088/0022-3727/42/22/224001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019237761
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1088/0022-3727/42/22/224002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041597236
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1088/0022-3727/42/22/224003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036256860
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physreve.80.016302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739266
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/tasc.2005.869666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061506426
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1111/j.1749-6632.2009.04089.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024435177
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1116/1.2815690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062172860
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1137/s0036144500378302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877745
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1152/ajpheart.1986.250.5.h828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079908358
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1678/rheology.38.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051510662
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2217/nnm.10.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035771704
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.260896.3 schema:alternateName New Jersey Institute of Technology
204 schema:name Department of Mathematical Sciences, New Jersey Institute of Technology, 07102, Newark, NJ, USA
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.438526.e schema:alternateName Virginia Tech
207 schema:name Department of Mathematics, Virginia Tech, 460 McBryde Hall, 24061-0123, Blacksburg, VA, USA
208 Interdisciplinary Program for Genetics, Bioinformatics and Computational Biology, Virginia Tech, 24061, Blacksburg, VA, USA
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...