Effective stiffness of composites reinforced by cylindrical fibers with smooth ends, with potential application to nanocomposites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-07

AUTHORS

Valeriy A. Buryachenko, V. I. Kushch, V. A. Dudka, A. Roy

ABSTRACT

Nanocomposite is modeled as a linearly elastic composite medium, which consists of a homogeneous matrix containing a statistically homogeneous random field of homogeneous cylindrical fibers with smooth ends and prescribed random orientation. Estimation of effective elastic moduli of nanocomposites was performed by the effective field method (see for references Buryachenko in Appl Mech Rev 54:1–47, 2001) developed in the framework of quasi crystalline approximation when the spatial correlations of inclusion location take particular ellipsoidal forms. A single cylindrical fiber with the smooth ends embedded in a large matrix sample is analyzed by finite element analysis for six different external loadings which yields a strain polarization tensor averaged over the volume of the fiber. The independent choice of shapes of inclusions and correlation holes provides the formulae of effective moduli which are symmetric, completely explicit and easy to use. The parametric numerical analysis reveals the most sensitive parameters influencing the effective moduli which are defined by the axial elastic moduli of nanofibers rather than their transversal moduli as well as by the choice of correlation holes, concentration and prescribed random orientation of nanofibers. More... »

PAGES

129-146

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00707-007-0531-z

DOI

http://dx.doi.org/10.1007/s00707-007-0531-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009562694


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Dayton", 
          "id": "https://www.grid.ac/institutes/grid.266231.2", 
          "name": [
            "University of Dayton Research Institute, 45469, Dayton, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buryachenko", 
        "givenName": "Valeriy A.", 
        "id": "sg:person.013021114705.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013021114705.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "V.Bakul Institute for Superhard materials", 
          "id": "https://www.grid.ac/institutes/grid.438873.3", 
          "name": [
            "Institute for Superhard Materials of the National Academy of Sciences, Kiev, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kushch", 
        "givenName": "V. I.", 
        "id": "sg:person.013616475305.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013616475305.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "V.Bakul Institute for Superhard materials", 
          "id": "https://www.grid.ac/institutes/grid.438873.3", 
          "name": [
            "Institute for Superhard Materials of the National Academy of Sciences, Kiev, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dudka", 
        "givenName": "V. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Air Force Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.417730.6", 
          "name": [
            "Air Force Research Laboratory, AFRL/MLBC, WPAFB, Dayton, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "A.", 
        "id": "sg:person.011303534243.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011303534243.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-6636(97)00023-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002262334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-4628(20010103)79:1<125::aid-app150>3.0.co;2-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012848005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004546618482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014480070", 
          "https://doi.org/10.1023/a:1004546618482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6636(87)90005-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015011021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6636(87)90005-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015011021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6636(00)00015-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019234789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-835x(99)00018-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020540890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5096(95)00058-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023273134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6636(01)00072-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023969698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1992.0062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030394757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-68485-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030982564", 
          "https://doi.org/10.1007/978-0-387-68485-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-68485-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030982564", 
          "https://doi.org/10.1007/978-0-387-68485-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6636(91)90006-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033910299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6636(91)90006-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033910299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2005.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037347757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2003.1264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040360995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(73)90064-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042745661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(73)90064-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042745661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01175978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043872048", 
          "https://doi.org/10.1007/bf01175978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01175978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043872048", 
          "https://doi.org/10.1007/bf01175978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-835x(01)00070-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048176582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0266-3538(03)00063-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049741455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0266-3538(03)00063-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049741455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0266-3538(03)00070-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050393513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0266-3538(03)00070-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050393513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.126500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051334168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1957.0133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0343396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0343396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.120680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057684858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.85.621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.85.621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1490129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062070892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1751182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062074021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3097287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062101160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5495.1331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062572133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199836800200208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063623755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/002199836800200208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063623755"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-07", 
    "datePublishedReg": "2008-07-01", 
    "description": "Nanocomposite is modeled as a linearly elastic composite medium, which consists of a homogeneous matrix containing a statistically homogeneous random field of homogeneous cylindrical fibers with smooth ends and prescribed random orientation. Estimation of effective elastic moduli of nanocomposites was performed by the effective field method (see for references Buryachenko in Appl Mech Rev 54:1\u201347, 2001) developed in the framework of quasi crystalline approximation when the spatial correlations of inclusion location take particular ellipsoidal forms. A single cylindrical fiber with the smooth ends embedded in a large matrix sample is analyzed by finite element analysis for six different external loadings which yields a strain polarization tensor averaged over the volume of the fiber. The independent choice of shapes of inclusions and correlation holes provides the formulae of effective moduli which are symmetric, completely explicit and easy to use. The parametric numerical analysis reveals the most sensitive parameters influencing the effective moduli which are defined by the axial elastic moduli of nanofibers rather than their transversal moduli as well as by the choice of correlation holes, concentration and prescribed random orientation of nanofibers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00707-007-0531-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044151", 
        "issn": [
          "0001-5970", 
          "1619-6937"
        ], 
        "name": "Acta Mechanica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "198"
      }
    ], 
    "name": "Effective stiffness of composites reinforced by cylindrical fibers with smooth ends, with potential application to nanocomposites", 
    "pagination": "129-146", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d8d97e5bc4c467c220b853bdb2e702cf4ed45ca95b807a726dfd5cd65b75b77"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00707-007-0531-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009562694"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00707-007-0531-z", 
      "https://app.dimensions.ai/details/publication/pub.1009562694"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13087_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00707-007-0531-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00707-007-0531-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00707-007-0531-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00707-007-0531-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00707-007-0531-z'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00707-007-0531-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N003275b3b8e146a1a0f07966f3a2ffa5
4 schema:citation sg:pub.10.1007/978-0-387-68485-7
5 sg:pub.10.1007/bf01175978
6 sg:pub.10.1023/a:1004546618482
7 https://doi.org/10.1002/1097-4628(20010103)79:1<125::aid-app150>3.0.co;2-d
8 https://doi.org/10.1016/0001-6160(73)90064-3
9 https://doi.org/10.1016/0022-5096(95)00058-q
10 https://doi.org/10.1016/0167-6636(87)90005-6
11 https://doi.org/10.1016/0167-6636(91)90006-l
12 https://doi.org/10.1016/j.compscitech.2005.08.005
13 https://doi.org/10.1016/s0167-6636(00)00015-6
14 https://doi.org/10.1016/s0167-6636(01)00072-2
15 https://doi.org/10.1016/s0167-6636(97)00023-9
16 https://doi.org/10.1016/s0266-3538(03)00063-0
17 https://doi.org/10.1016/s0266-3538(03)00070-8
18 https://doi.org/10.1016/s1359-835x(01)00070-7
19 https://doi.org/10.1016/s1359-835x(99)00018-4
20 https://doi.org/10.1021/nl0343396
21 https://doi.org/10.1063/1.120680
22 https://doi.org/10.1063/1.126500
23 https://doi.org/10.1098/rspa.1957.0133
24 https://doi.org/10.1098/rspa.1992.0062
25 https://doi.org/10.1098/rspa.2003.1264
26 https://doi.org/10.1103/physrev.85.621
27 https://doi.org/10.1115/1.1490129
28 https://doi.org/10.1115/1.1751182
29 https://doi.org/10.1115/1.3097287
30 https://doi.org/10.1126/science.290.5495.1331
31 https://doi.org/10.1177/002199836800200208
32 schema:datePublished 2008-07
33 schema:datePublishedReg 2008-07-01
34 schema:description Nanocomposite is modeled as a linearly elastic composite medium, which consists of a homogeneous matrix containing a statistically homogeneous random field of homogeneous cylindrical fibers with smooth ends and prescribed random orientation. Estimation of effective elastic moduli of nanocomposites was performed by the effective field method (see for references Buryachenko in Appl Mech Rev 54:1–47, 2001) developed in the framework of quasi crystalline approximation when the spatial correlations of inclusion location take particular ellipsoidal forms. A single cylindrical fiber with the smooth ends embedded in a large matrix sample is analyzed by finite element analysis for six different external loadings which yields a strain polarization tensor averaged over the volume of the fiber. The independent choice of shapes of inclusions and correlation holes provides the formulae of effective moduli which are symmetric, completely explicit and easy to use. The parametric numerical analysis reveals the most sensitive parameters influencing the effective moduli which are defined by the axial elastic moduli of nanofibers rather than their transversal moduli as well as by the choice of correlation holes, concentration and prescribed random orientation of nanofibers.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N2c30e0831084490081608df7d074bef6
39 N9b07f02878ff46d3a7e380b848ddf3a5
40 sg:journal.1044151
41 schema:name Effective stiffness of composites reinforced by cylindrical fibers with smooth ends, with potential application to nanocomposites
42 schema:pagination 129-146
43 schema:productId N5c7a51b97e0744338dc249f8b7bcc3c7
44 Naed1fb3a58174677b35797266bf5678c
45 Nfe05f15c18db495a8b48280bb1dc8f8c
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009562694
47 https://doi.org/10.1007/s00707-007-0531-z
48 schema:sdDatePublished 2019-04-11T14:29
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N1181a39c666d431b9524c436ac7750a9
51 schema:url http://link.springer.com/10.1007%2Fs00707-007-0531-z
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N003275b3b8e146a1a0f07966f3a2ffa5 rdf:first sg:person.013021114705.76
56 rdf:rest Nc5ec0ca6ed6a4feda8bb586f87fa2611
57 N1181a39c666d431b9524c436ac7750a9 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N2c30e0831084490081608df7d074bef6 schema:issueNumber 3-4
60 rdf:type schema:PublicationIssue
61 N5c7a51b97e0744338dc249f8b7bcc3c7 schema:name readcube_id
62 schema:value 2d8d97e5bc4c467c220b853bdb2e702cf4ed45ca95b807a726dfd5cd65b75b77
63 rdf:type schema:PropertyValue
64 N5cff9c9b04be4d59a5bd59fa22ee2365 rdf:first N91ff4f6e624a4ae786c25d418e3ffb01
65 rdf:rest Ne78e8512a69e4fc4ba1b5c053df25638
66 N91ff4f6e624a4ae786c25d418e3ffb01 schema:affiliation https://www.grid.ac/institutes/grid.438873.3
67 schema:familyName Dudka
68 schema:givenName V. A.
69 rdf:type schema:Person
70 N9b07f02878ff46d3a7e380b848ddf3a5 schema:volumeNumber 198
71 rdf:type schema:PublicationVolume
72 Naed1fb3a58174677b35797266bf5678c schema:name doi
73 schema:value 10.1007/s00707-007-0531-z
74 rdf:type schema:PropertyValue
75 Nc5ec0ca6ed6a4feda8bb586f87fa2611 rdf:first sg:person.013616475305.85
76 rdf:rest N5cff9c9b04be4d59a5bd59fa22ee2365
77 Ne78e8512a69e4fc4ba1b5c053df25638 rdf:first sg:person.011303534243.57
78 rdf:rest rdf:nil
79 Nfe05f15c18db495a8b48280bb1dc8f8c schema:name dimensions_id
80 schema:value pub.1009562694
81 rdf:type schema:PropertyValue
82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
83 schema:name Engineering
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
86 schema:name Materials Engineering
87 rdf:type schema:DefinedTerm
88 sg:journal.1044151 schema:issn 0001-5970
89 1619-6937
90 schema:name Acta Mechanica
91 rdf:type schema:Periodical
92 sg:person.011303534243.57 schema:affiliation https://www.grid.ac/institutes/grid.417730.6
93 schema:familyName Roy
94 schema:givenName A.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011303534243.57
96 rdf:type schema:Person
97 sg:person.013021114705.76 schema:affiliation https://www.grid.ac/institutes/grid.266231.2
98 schema:familyName Buryachenko
99 schema:givenName Valeriy A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013021114705.76
101 rdf:type schema:Person
102 sg:person.013616475305.85 schema:affiliation https://www.grid.ac/institutes/grid.438873.3
103 schema:familyName Kushch
104 schema:givenName V. I.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013616475305.85
106 rdf:type schema:Person
107 sg:pub.10.1007/978-0-387-68485-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030982564
108 https://doi.org/10.1007/978-0-387-68485-7
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf01175978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043872048
111 https://doi.org/10.1007/bf01175978
112 rdf:type schema:CreativeWork
113 sg:pub.10.1023/a:1004546618482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014480070
114 https://doi.org/10.1023/a:1004546618482
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/1097-4628(20010103)79:1<125::aid-app150>3.0.co;2-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1012848005
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0001-6160(73)90064-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042745661
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0022-5096(95)00058-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1023273134
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0167-6636(87)90005-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015011021
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0167-6636(91)90006-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1033910299
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.compscitech.2005.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037347757
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0167-6636(00)00015-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019234789
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0167-6636(01)00072-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023969698
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0167-6636(97)00023-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002262334
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0266-3538(03)00063-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049741455
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0266-3538(03)00070-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050393513
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s1359-835x(01)00070-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048176582
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s1359-835x(99)00018-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020540890
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1021/nl0343396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215609
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.120680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057684858
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.126500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051334168
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1098/rspa.1957.0133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052645938
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1098/rspa.1992.0062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030394757
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1098/rspa.2003.1264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040360995
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrev.85.621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060458942
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1115/1.1490129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062070892
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1115/1.1751182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062074021
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1115/1.3097287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062101160
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/science.290.5495.1331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062572133
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1177/002199836800200208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063623755
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.266231.2 schema:alternateName University of Dayton
167 schema:name University of Dayton Research Institute, 45469, Dayton, OH, USA
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.417730.6 schema:alternateName Air Force Research Laboratory
170 schema:name Air Force Research Laboratory, AFRL/MLBC, WPAFB, Dayton, OH, USA
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.438873.3 schema:alternateName V.Bakul Institute for Superhard materials
173 schema:name Institute for Superhard Materials of the National Academy of Sciences, Kiev, Ukraine
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...