Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-04

AUTHORS

T. Hayat, M. Khan, S. Asghar

ABSTRACT

This paper deals with some steady unidirectional flows of an Oldroyd 8-constant magnetohydrodynamic (MHD) fluid in bounded domains. The fluid is electrically conducting in the presence of a uniform magnetic field. Three nonlinear flows are produced by the motion of a boundary or by sudden application of a constant pressure gradient or by the motion of a boundary and pressure gradient. The governing nonlinear differential equations are solved analytically using homotopy analysis method (HAM). Expressions for the velocity distribution are given. It is noted that for steady flow the solutions are strongly dependent on the non–Newtonian and magnetic parameters. The MHD solutions for a Newtonian fluid, as well as those corresponding to the Oldroyd 3 and 6-constant fluids, a Maxwell fluid and a second grade one, appear as limiting cases of our solutions. Finally, a physical interpretation of the results is given with the help of several graphs. More... »

PAGES

213-232

Journal

TITLE

Acta Mechanica

ISSUE

3-4

VOLUME

168

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00707-004-0085-2

DOI

http://dx.doi.org/10.1007/s00707-004-0085-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000134811


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Quaid-i-Azam University", 
          "id": "https://www.grid.ac/institutes/grid.412621.2", 
          "name": [
            "Department of Mathematics, Quaid-i-Azam University, 45320, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayat", 
        "givenName": "T.", 
        "id": "sg:person.01073342703.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073342703.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quaid-i-Azam University", 
          "id": "https://www.grid.ac/institutes/grid.412621.2", 
          "name": [
            "Department of Mathematics, Quaid-i-Azam University, 45320, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "M.", 
        "id": "sg:person.016031744323.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031744323.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Quaid-i-Azam University", 
          "id": "https://www.grid.ac/institutes/grid.412621.2", 
          "name": [
            "Department of Mathematics, Quaid-i-Azam University, 45320, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asghar", 
        "givenName": "S.", 
        "id": "sg:person.014541701567.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014541701567.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0895-7177(02)00252-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004832169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-7177(02)00252-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004832169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690190612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004892763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(03)00105-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005131901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(03)00105-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005131901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7462(02)00062-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014446428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7462(96)00101-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031905654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7462(92)90045-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045401576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690070231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050954427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203491164.ch18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051461378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112001007169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053912488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112003004865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054045592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7225(94)00078-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054544105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3423405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062119452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3423914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062119959"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-04", 
    "datePublishedReg": "2004-04-01", 
    "description": "This paper deals with some steady unidirectional flows of an Oldroyd 8-constant magnetohydrodynamic (MHD) fluid in bounded domains. The fluid is electrically conducting in the presence of a uniform magnetic field. Three nonlinear flows are produced by the motion of a boundary or by sudden application of a constant pressure gradient or by the motion of a boundary and pressure gradient. The governing nonlinear differential equations are solved analytically using homotopy analysis method (HAM). Expressions for the velocity distribution are given. It is noted that for steady flow the solutions are strongly dependent on the non\u2013Newtonian and magnetic parameters. The MHD solutions for a Newtonian fluid, as well as those corresponding to the Oldroyd 3 and 6-constant fluids, a Maxwell fluid and a second grade one, appear as limiting cases of our solutions. Finally, a physical interpretation of the results is given with the help of several graphs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00707-004-0085-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044151", 
        "issn": [
          "0001-5970", 
          "1619-6937"
        ], 
        "name": "Acta Mechanica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "168"
      }
    ], 
    "name": "Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid", 
    "pagination": "213-232", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "00a4069e3b13e1004bd02dd415199cd0ee0df3deabd7d208ee5544545c6b253e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00707-004-0085-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000134811"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00707-004-0085-2", 
      "https://app.dimensions.ai/details/publication/pub.1000134811"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00707-004-0085-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00707-004-0085-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00707-004-0085-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00707-004-0085-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00707-004-0085-2'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00707-004-0085-2 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N044cfab269584cbd84b7e97cac9b7a26
4 schema:citation https://doi.org/10.1002/aic.690070231
5 https://doi.org/10.1002/aic.690190612
6 https://doi.org/10.1016/0020-7225(94)00078-x
7 https://doi.org/10.1016/0020-7462(92)90045-9
8 https://doi.org/10.1016/s0017-9310(03)00105-4
9 https://doi.org/10.1016/s0020-7462(02)00062-8
10 https://doi.org/10.1016/s0020-7462(96)00101-1
11 https://doi.org/10.1016/s0895-7177(02)00252-2
12 https://doi.org/10.1017/s0022112001007169
13 https://doi.org/10.1017/s0022112003004865
14 https://doi.org/10.1115/1.3423405
15 https://doi.org/10.1115/1.3423914
16 https://doi.org/10.1201/9780203491164.ch18
17 schema:datePublished 2004-04
18 schema:datePublishedReg 2004-04-01
19 schema:description This paper deals with some steady unidirectional flows of an Oldroyd 8-constant magnetohydrodynamic (MHD) fluid in bounded domains. The fluid is electrically conducting in the presence of a uniform magnetic field. Three nonlinear flows are produced by the motion of a boundary or by sudden application of a constant pressure gradient or by the motion of a boundary and pressure gradient. The governing nonlinear differential equations are solved analytically using homotopy analysis method (HAM). Expressions for the velocity distribution are given. It is noted that for steady flow the solutions are strongly dependent on the non–Newtonian and magnetic parameters. The MHD solutions for a Newtonian fluid, as well as those corresponding to the Oldroyd 3 and 6-constant fluids, a Maxwell fluid and a second grade one, appear as limiting cases of our solutions. Finally, a physical interpretation of the results is given with the help of several graphs.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N22f1c51e8b5f4b71a5b9dfd256d3eea4
24 Nf193cc08b8fd4fe9b88a3c4f69e05b51
25 sg:journal.1044151
26 schema:name Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid
27 schema:pagination 213-232
28 schema:productId N19dae7811fa449c0a03df989f68069f9
29 N3e250b47d218487790d6e34f33f2a772
30 Nf364c7701e1340eea85c6a35a7f2d43b
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000134811
32 https://doi.org/10.1007/s00707-004-0085-2
33 schema:sdDatePublished 2019-04-10T20:46
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N9635611b87bf4d13b7271c1ecde8abf3
36 schema:url http://link.springer.com/10.1007%2Fs00707-004-0085-2
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N044cfab269584cbd84b7e97cac9b7a26 rdf:first sg:person.01073342703.61
41 rdf:rest N0b9143bccd5b4cc89f65611d97edba87
42 N0b9143bccd5b4cc89f65611d97edba87 rdf:first sg:person.016031744323.06
43 rdf:rest N6cc42393c6074be29d933f7fe0756c4c
44 N19dae7811fa449c0a03df989f68069f9 schema:name doi
45 schema:value 10.1007/s00707-004-0085-2
46 rdf:type schema:PropertyValue
47 N22f1c51e8b5f4b71a5b9dfd256d3eea4 schema:volumeNumber 168
48 rdf:type schema:PublicationVolume
49 N3e250b47d218487790d6e34f33f2a772 schema:name dimensions_id
50 schema:value pub.1000134811
51 rdf:type schema:PropertyValue
52 N6cc42393c6074be29d933f7fe0756c4c rdf:first sg:person.014541701567.33
53 rdf:rest rdf:nil
54 N9635611b87bf4d13b7271c1ecde8abf3 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nf193cc08b8fd4fe9b88a3c4f69e05b51 schema:issueNumber 3-4
57 rdf:type schema:PublicationIssue
58 Nf364c7701e1340eea85c6a35a7f2d43b schema:name readcube_id
59 schema:value 00a4069e3b13e1004bd02dd415199cd0ee0df3deabd7d208ee5544545c6b253e
60 rdf:type schema:PropertyValue
61 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
62 schema:name Engineering
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
65 schema:name Interdisciplinary Engineering
66 rdf:type schema:DefinedTerm
67 sg:journal.1044151 schema:issn 0001-5970
68 1619-6937
69 schema:name Acta Mechanica
70 rdf:type schema:Periodical
71 sg:person.01073342703.61 schema:affiliation https://www.grid.ac/institutes/grid.412621.2
72 schema:familyName Hayat
73 schema:givenName T.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073342703.61
75 rdf:type schema:Person
76 sg:person.014541701567.33 schema:affiliation https://www.grid.ac/institutes/grid.412621.2
77 schema:familyName Asghar
78 schema:givenName S.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014541701567.33
80 rdf:type schema:Person
81 sg:person.016031744323.06 schema:affiliation https://www.grid.ac/institutes/grid.412621.2
82 schema:familyName Khan
83 schema:givenName M.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031744323.06
85 rdf:type schema:Person
86 https://doi.org/10.1002/aic.690070231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050954427
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1002/aic.690190612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004892763
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0020-7225(94)00078-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054544105
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0020-7462(92)90045-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045401576
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/s0017-9310(03)00105-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005131901
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0020-7462(02)00062-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014446428
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/s0020-7462(96)00101-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031905654
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/s0895-7177(02)00252-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004832169
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1017/s0022112001007169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053912488
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1017/s0022112003004865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054045592
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1115/1.3423405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062119452
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1115/1.3423914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062119959
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1201/9780203491164.ch18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051461378
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.412621.2 schema:alternateName Quaid-i-Azam University
113 schema:name Department of Mathematics, Quaid-i-Azam University, 45320, Islamabad, Pakistan
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...