A circulation classification scheme applicable in GCM studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-10

AUTHORS

R. Huth

ABSTRACT

The goal of the paper is to present and examine the method of classification of daily circulation patterns that allows (i) a fair comparison of groupings among different datasets (typically representing the observed climate and that simulated by a general circulation model, GCM) and (ii) huge datasets, common in GCM studies based on daily values, to be classified. The circulation classification method is shown to be a useful tool in GCM validation and analysis of climate change response, particularly in comparisons of (i) shapes of the mean type patterns, (ii) the frequency and persistence of the types, (iii) the probability of transitions from one type to another, and (iv) conditional surface temperature distributions. It is also shown that a simultaneous examination of multiple classifications is beneficial in eliminating subjectivity of any single classification and allowing a detailed inspection of differences between climates. The classification method is a modification of the T-mode principal component analysis (PCA). The T-mode refers to the input data matrix where gridpoint values are arranged in rows and daily patterns in columns. The classification procedure is applied to observed daily 500 hPa geopotential height patterns and those simulated by the control and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} ECHAM3 GCM runs. More... »

PAGES

1-18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s007040070012

DOI

http://dx.doi.org/10.1007/s007040070012

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013654023


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.448082.2", 
          "name": [
            "Institute of Atmospheric Physics, Prague, Czech Republic, CZ"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huth", 
        "givenName": "R.", 
        "id": "sg:person.016126671053.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016126671053.73"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-10", 
    "datePublishedReg": "2000-10-01", 
    "description": "The goal of the paper is to present and examine the method of classification of daily circulation patterns that allows (i) a fair comparison of groupings among different datasets (typically representing the observed climate and that simulated by a general circulation model, GCM) and (ii) huge datasets, common in GCM studies based on daily values, to be classified. The circulation classification method is shown to be a useful tool in GCM validation and analysis of climate change response, particularly in comparisons of (i) shapes of the mean type patterns, (ii) the frequency and persistence of the types, (iii) the probability of transitions from one type to another, and (iv) conditional surface temperature distributions. It is also shown that a simultaneous examination of multiple classifications is beneficial in eliminating subjectivity of any single classification and allowing a detailed inspection of differences between climates. The classification method is a modification of the T-mode principal component analysis (PCA). The T-mode refers to the input data matrix where gridpoint values are arranged in rows and daily patterns in columns. The classification procedure is applied to observed daily 500 hPa geopotential height patterns and those simulated by the control and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\end{document} ECHAM3 GCM runs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s007040070012", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1086664", 
        "issn": [
          "0177-798X", 
          "1434-4483"
        ], 
        "name": "Theoretical and Applied Climatology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "A circulation classification scheme applicable in GCM studies", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "410b366de0d52caf75a8e965612683f675d19eb5cb80663063546411584ecd58"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s007040070012"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013654023"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s007040070012", 
      "https://app.dimensions.ai/details/publication/pub.1013654023"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s007040070012"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s007040070012'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s007040070012'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s007040070012'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s007040070012'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s007040070012 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nba1786a142f34b9d83df50964ec48f20
4 schema:datePublished 2000-10
5 schema:datePublishedReg 2000-10-01
6 schema:description The goal of the paper is to present and examine the method of classification of daily circulation patterns that allows (i) a fair comparison of groupings among different datasets (typically representing the observed climate and that simulated by a general circulation model, GCM) and (ii) huge datasets, common in GCM studies based on daily values, to be classified. The circulation classification method is shown to be a useful tool in GCM validation and analysis of climate change response, particularly in comparisons of (i) shapes of the mean type patterns, (ii) the frequency and persistence of the types, (iii) the probability of transitions from one type to another, and (iv) conditional surface temperature distributions. It is also shown that a simultaneous examination of multiple classifications is beneficial in eliminating subjectivity of any single classification and allowing a detailed inspection of differences between climates. The classification method is a modification of the T-mode principal component analysis (PCA). The T-mode refers to the input data matrix where gridpoint values are arranged in rows and daily patterns in columns. The classification procedure is applied to observed daily 500 hPa geopotential height patterns and those simulated by the control and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} ECHAM3 GCM runs.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N4f3d06fb52074182b226c1106e91b74e
11 N9bdcb62d3c9e4d8199710540c9758bd5
12 sg:journal.1086664
13 schema:name A circulation classification scheme applicable in GCM studies
14 schema:pagination 1-18
15 schema:productId N57637bbed39845c6b346e9e7b2db2dfc
16 N87a363ae10fb4159ae99745db9fa7036
17 Nae7730d9a91f4d3a9a913384d51b5914
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013654023
19 https://doi.org/10.1007/s007040070012
20 schema:sdDatePublished 2019-04-10T17:26
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N900e557c83064797a8ee4fd0ca0dbfb5
23 schema:url http://link.springer.com/10.1007/s007040070012
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N4f3d06fb52074182b226c1106e91b74e schema:volumeNumber 67
28 rdf:type schema:PublicationVolume
29 N57637bbed39845c6b346e9e7b2db2dfc schema:name doi
30 schema:value 10.1007/s007040070012
31 rdf:type schema:PropertyValue
32 N87a363ae10fb4159ae99745db9fa7036 schema:name dimensions_id
33 schema:value pub.1013654023
34 rdf:type schema:PropertyValue
35 N900e557c83064797a8ee4fd0ca0dbfb5 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N9bdcb62d3c9e4d8199710540c9758bd5 schema:issueNumber 1-2
38 rdf:type schema:PublicationIssue
39 Nae7730d9a91f4d3a9a913384d51b5914 schema:name readcube_id
40 schema:value 410b366de0d52caf75a8e965612683f675d19eb5cb80663063546411584ecd58
41 rdf:type schema:PropertyValue
42 Nba1786a142f34b9d83df50964ec48f20 rdf:first sg:person.016126671053.73
43 rdf:rest rdf:nil
44 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
45 schema:name Mathematical Sciences
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
48 schema:name Statistics
49 rdf:type schema:DefinedTerm
50 sg:journal.1086664 schema:issn 0177-798X
51 1434-4483
52 schema:name Theoretical and Applied Climatology
53 rdf:type schema:Periodical
54 sg:person.016126671053.73 schema:affiliation https://www.grid.ac/institutes/grid.448082.2
55 schema:familyName Huth
56 schema:givenName R.
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016126671053.73
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.448082.2 schema:alternateName Institute of Atmospheric Physics
60 schema:name Institute of Atmospheric Physics, Prague, Czech Republic, CZ
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...