Hierarchical sensitivity analysis for simulating barrier island geomorphologic responses to future storms and sea-level rise View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-09

AUTHORS

Heng Dai, Ming Ye, Bill X. Hu, Alan W. Niedoroda, Xiaoying Zhang, Xingyuan Chen, Xuehang Song, Jie Niu

ABSTRACT

This paper presents a new application of an advanced hierarchical sensitivity analysis of a new climate model of barrier island geomorphological evolution. The implemented sensitivity analysis in this study integrates a hierarchical uncertainty framework with a variance-based global sensitivity analysis to decompose the different model input uncertainties. The analysis can provide quantitative and accurate measurements for the relative importance of uncertain model input factors while considering their dependence relationships. The climate model used in this research was the barrier island profile (BIP) model, which is a new computer code developed to simulate barrier island morphological evolution over periods ranging from years to decades under the impacts of accelerated future sea-level rise and long-term changes in the storm climate. In the application of the model, the BIP model was used to evaluate the responses of a series of barrier island cross-sections derived for Santa Rosa Island, Florida, to random storm events and five potential accelerated rates of sea-level rise projected over the next century. The uncertain model input factors thus include the scenario uncertainty caused by alternative future sea-level rise scenarios and the parametric uncertainties of random storm parameters and dune characteristics. The study results reveal that the occurrence of storms is the most important factor for the evolution of sand dunes on the barrier island and the impact of sea-level rise is essential to the morphological change of the island backshore environment. The analysis can provide helpful insights for coastal management and planning. This hierarchical sensitivity analysis is mathematically general and rigorous and can be applied to a wide range of climate models. More... »

PAGES

1495-1511

References to SciGraph publications

  • 2009-01-06. Reconstructing sea level from paleo and projected temperatures 200 to 2100 ad in CLIMATE DYNAMICS
  • 2010-04-11. The potential to narrow uncertainty in projections of regional precipitation change in CLIMATE DYNAMICS
  • 2009-10-10. Forecasting skill of model averages in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00704-018-2700-5

    DOI

    http://dx.doi.org/10.1007/s00704-018-2700-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1109797515


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China", 
              "id": "http://www.grid.ac/institutes/grid.258164.c", 
              "name": [
                "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dai", 
            "givenName": "Heng", 
            "id": "sg:person.016353443723.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016353443723.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Scientific Computing and Geophysical Fluid Dynamics Institute, Florida State University, 32306, Tallahassee, FL, USA", 
              "id": "http://www.grid.ac/institutes/grid.255986.5", 
              "name": [
                "Department of Scientific Computing and Geophysical Fluid Dynamics Institute, Florida State University, 32306, Tallahassee, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ye", 
            "givenName": "Ming", 
            "id": "sg:person.016425122141.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425122141.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China", 
              "id": "http://www.grid.ac/institutes/grid.258164.c", 
              "name": [
                "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Bill X.", 
            "id": "sg:person.012556140447.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wyndham Consultants, LLC, 32312, Tallahassee, FL, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Wyndham Consultants, LLC, 32312, Tallahassee, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Niedoroda", 
            "givenName": "Alan W.", 
            "id": "sg:person.011216367545.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011216367545.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China", 
              "id": "http://www.grid.ac/institutes/grid.258164.c", 
              "name": [
                "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Xiaoying", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pacific Northwest National Laboratory, 99352, Richland, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.451303.0", 
              "name": [
                "Pacific Northwest National Laboratory, 99352, Richland, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Xingyuan", 
            "id": "sg:person.014637520770.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637520770.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pacific Northwest National Laboratory, 99352, Richland, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.451303.0", 
              "name": [
                "Pacific Northwest National Laboratory, 99352, Richland, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Xuehang", 
            "id": "sg:person.07444420313.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07444420313.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China", 
              "id": "http://www.grid.ac/institutes/grid.258164.c", 
              "name": [
                "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Niu", 
            "givenName": "Jie", 
            "id": "sg:person.013420450661.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013420450661.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00382-010-0810-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001203373", 
              "https://doi.org/10.1007/s00382-010-0810-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-008-0507-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022370353", 
              "https://doi.org/10.1007/s00382-008-0507-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-009-0350-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018913838", 
              "https://doi.org/10.1007/s00477-009-0350-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11-09", 
        "datePublishedReg": "2018-11-09", 
        "description": "This paper presents a new application of an advanced hierarchical sensitivity analysis of a new climate model of barrier island geomorphological evolution. The implemented sensitivity analysis in this study integrates a hierarchical uncertainty framework with a variance-based global sensitivity analysis to decompose the different model input uncertainties. The analysis can provide quantitative and accurate measurements for the relative importance of uncertain model input factors while considering their dependence relationships. The climate model used in this research was the barrier island profile (BIP) model, which is a new computer code developed to simulate barrier island morphological evolution over periods ranging from years to decades under the impacts of accelerated future sea-level rise and long-term changes in the storm climate. In the application of the model, the BIP model was used to evaluate the responses of a series of barrier island cross-sections derived for Santa Rosa Island, Florida, to random storm events and five potential accelerated rates of sea-level rise projected over the next century. The uncertain model input factors thus include the scenario uncertainty caused by alternative future sea-level rise scenarios and the parametric uncertainties of random storm parameters and dune characteristics. The study results reveal that the occurrence of storms is the most important factor for the evolution of sand dunes on the barrier island and the impact of sea-level rise is essential to the morphological change of the island backshore environment. The analysis can provide helpful insights for coastal management and planning. This hierarchical sensitivity analysis is mathematically general and rigorous and can be applied to a wide range of climate models.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00704-018-2700-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4321653", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.9184942", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1086664", 
            "issn": [
              "0177-798X", 
              "1434-4483"
            ], 
            "name": "Theoretical and Applied Climatology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "136"
          }
        ], 
        "keywords": [
          "sea level rise", 
          "climate models", 
          "model input factors", 
          "hierarchical sensitivity analysis", 
          "future sea-level rise scenarios", 
          "future sea level rise", 
          "sea level rise scenarios", 
          "new climate model", 
          "occurrence of storms", 
          "random storm events", 
          "Santa Rosa Island", 
          "long-term changes", 
          "backshore environment", 
          "geomorphological evolution", 
          "storm climate", 
          "geomorphologic response", 
          "model input uncertainty", 
          "rise scenarios", 
          "storm parameters", 
          "storm events", 
          "barrier islands", 
          "future storms", 
          "dune characteristics", 
          "scenario uncertainty", 
          "coastal management", 
          "sand dunes", 
          "next century", 
          "uncertainty framework", 
          "storms", 
          "morphological evolution", 
          "sensitivity analysis", 
          "global sensitivity analysis", 
          "islands", 
          "profile model", 
          "variance-based global sensitivity analysis", 
          "input uncertainty", 
          "new computer code", 
          "evolution", 
          "relative importance", 
          "uncertainty", 
          "dunes", 
          "climate", 
          "accelerated rate", 
          "rise", 
          "input factors", 
          "Florida", 
          "events", 
          "accurate measurement", 
          "changes", 
          "BIP model", 
          "occurrence", 
          "model", 
          "impact", 
          "important factor", 
          "century", 
          "wide range", 
          "period", 
          "scenarios", 
          "computer code", 
          "environment", 
          "measurements", 
          "analysis", 
          "morphological changes", 
          "cross sections", 
          "decades", 
          "series", 
          "study results", 
          "range", 
          "years", 
          "characteristics", 
          "insights", 
          "importance", 
          "relationship", 
          "dependence relationships", 
          "response", 
          "factors", 
          "parametric uncertainties", 
          "helpful insights", 
          "parameters", 
          "planning", 
          "rate", 
          "results", 
          "study", 
          "framework", 
          "management", 
          "applications", 
          "new applications", 
          "research", 
          "paper", 
          "code"
        ], 
        "name": "Hierarchical sensitivity analysis for simulating barrier island geomorphologic responses to future storms and sea-level rise", 
        "pagination": "1495-1511", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1109797515"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00704-018-2700-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00704-018-2700-5", 
          "https://app.dimensions.ai/details/publication/pub.1109797515"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_793.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00704-018-2700-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2700-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2700-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2700-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2700-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    221 TRIPLES      22 PREDICATES      118 URIs      107 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00704-018-2700-5 schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author Nfb9441d6cb82414484ceeaa5fb3a0dee
    4 schema:citation sg:pub.10.1007/s00382-008-0507-2
    5 sg:pub.10.1007/s00382-010-0810-6
    6 sg:pub.10.1007/s00477-009-0350-y
    7 schema:datePublished 2018-11-09
    8 schema:datePublishedReg 2018-11-09
    9 schema:description This paper presents a new application of an advanced hierarchical sensitivity analysis of a new climate model of barrier island geomorphological evolution. The implemented sensitivity analysis in this study integrates a hierarchical uncertainty framework with a variance-based global sensitivity analysis to decompose the different model input uncertainties. The analysis can provide quantitative and accurate measurements for the relative importance of uncertain model input factors while considering their dependence relationships. The climate model used in this research was the barrier island profile (BIP) model, which is a new computer code developed to simulate barrier island morphological evolution over periods ranging from years to decades under the impacts of accelerated future sea-level rise and long-term changes in the storm climate. In the application of the model, the BIP model was used to evaluate the responses of a series of barrier island cross-sections derived for Santa Rosa Island, Florida, to random storm events and five potential accelerated rates of sea-level rise projected over the next century. The uncertain model input factors thus include the scenario uncertainty caused by alternative future sea-level rise scenarios and the parametric uncertainties of random storm parameters and dune characteristics. The study results reveal that the occurrence of storms is the most important factor for the evolution of sand dunes on the barrier island and the impact of sea-level rise is essential to the morphological change of the island backshore environment. The analysis can provide helpful insights for coastal management and planning. This hierarchical sensitivity analysis is mathematically general and rigorous and can be applied to a wide range of climate models.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf Nc8248c1d59604877a54a923d6463fe29
    14 Nd034b451ae72436b805031ae58edd39d
    15 sg:journal.1086664
    16 schema:keywords BIP model
    17 Florida
    18 Santa Rosa Island
    19 accelerated rate
    20 accurate measurement
    21 analysis
    22 applications
    23 backshore environment
    24 barrier islands
    25 century
    26 changes
    27 characteristics
    28 climate
    29 climate models
    30 coastal management
    31 code
    32 computer code
    33 cross sections
    34 decades
    35 dependence relationships
    36 dune characteristics
    37 dunes
    38 environment
    39 events
    40 evolution
    41 factors
    42 framework
    43 future sea level rise
    44 future sea-level rise scenarios
    45 future storms
    46 geomorphologic response
    47 geomorphological evolution
    48 global sensitivity analysis
    49 helpful insights
    50 hierarchical sensitivity analysis
    51 impact
    52 importance
    53 important factor
    54 input factors
    55 input uncertainty
    56 insights
    57 islands
    58 long-term changes
    59 management
    60 measurements
    61 model
    62 model input factors
    63 model input uncertainty
    64 morphological changes
    65 morphological evolution
    66 new applications
    67 new climate model
    68 new computer code
    69 next century
    70 occurrence
    71 occurrence of storms
    72 paper
    73 parameters
    74 parametric uncertainties
    75 period
    76 planning
    77 profile model
    78 random storm events
    79 range
    80 rate
    81 relationship
    82 relative importance
    83 research
    84 response
    85 results
    86 rise
    87 rise scenarios
    88 sand dunes
    89 scenario uncertainty
    90 scenarios
    91 sea level rise
    92 sea level rise scenarios
    93 sensitivity analysis
    94 series
    95 storm climate
    96 storm events
    97 storm parameters
    98 storms
    99 study
    100 study results
    101 uncertainty
    102 uncertainty framework
    103 variance-based global sensitivity analysis
    104 wide range
    105 years
    106 schema:name Hierarchical sensitivity analysis for simulating barrier island geomorphologic responses to future storms and sea-level rise
    107 schema:pagination 1495-1511
    108 schema:productId N22dd08a994df4aa299c74fac7d8d09ff
    109 Nd4df29363af84cf49fe8d43c10a28d1f
    110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109797515
    111 https://doi.org/10.1007/s00704-018-2700-5
    112 schema:sdDatePublished 2022-05-10T10:19
    113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    114 schema:sdPublisher N63b718628b82427681e53e2e1fe7b9b8
    115 schema:url https://doi.org/10.1007/s00704-018-2700-5
    116 sgo:license sg:explorer/license/
    117 sgo:sdDataset articles
    118 rdf:type schema:ScholarlyArticle
    119 N08c58a059dae45b297c4b1c64df02f6f rdf:first sg:person.013420450661.39
    120 rdf:rest rdf:nil
    121 N22dd08a994df4aa299c74fac7d8d09ff schema:name dimensions_id
    122 schema:value pub.1109797515
    123 rdf:type schema:PropertyValue
    124 N63b718628b82427681e53e2e1fe7b9b8 schema:name Springer Nature - SN SciGraph project
    125 rdf:type schema:Organization
    126 N65795c44b41449ca8bfdd1a345361498 rdf:first sg:person.07444420313.41
    127 rdf:rest N08c58a059dae45b297c4b1c64df02f6f
    128 N7771019f0b1246589d57fd356bd1291b rdf:first Ne6c10d119f394504a88964a6d77ea52e
    129 rdf:rest Nb0cb200e3b49481783f3ff069c0fa4ba
    130 N8a198de713b34bce928889489cd2289f rdf:first sg:person.016425122141.09
    131 rdf:rest Na7ffdf1c5fd0448ba883542107bb13ba
    132 Na7ffdf1c5fd0448ba883542107bb13ba rdf:first sg:person.012556140447.41
    133 rdf:rest Nef7c08ba9fda4d65884108c2b0c04ef4
    134 Nb0cb200e3b49481783f3ff069c0fa4ba rdf:first sg:person.014637520770.82
    135 rdf:rest N65795c44b41449ca8bfdd1a345361498
    136 Nc8248c1d59604877a54a923d6463fe29 schema:volumeNumber 136
    137 rdf:type schema:PublicationVolume
    138 Nd034b451ae72436b805031ae58edd39d schema:issueNumber 3-4
    139 rdf:type schema:PublicationIssue
    140 Nd4df29363af84cf49fe8d43c10a28d1f schema:name doi
    141 schema:value 10.1007/s00704-018-2700-5
    142 rdf:type schema:PropertyValue
    143 Ne6c10d119f394504a88964a6d77ea52e schema:affiliation grid-institutes:grid.258164.c
    144 schema:familyName Zhang
    145 schema:givenName Xiaoying
    146 rdf:type schema:Person
    147 Nef7c08ba9fda4d65884108c2b0c04ef4 rdf:first sg:person.011216367545.69
    148 rdf:rest N7771019f0b1246589d57fd356bd1291b
    149 Nfb9441d6cb82414484ceeaa5fb3a0dee rdf:first sg:person.016353443723.08
    150 rdf:rest N8a198de713b34bce928889489cd2289f
    151 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Earth Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Physical Geography and Environmental Geoscience
    156 rdf:type schema:DefinedTerm
    157 sg:grant.4321653 http://pending.schema.org/fundedItem sg:pub.10.1007/s00704-018-2700-5
    158 rdf:type schema:MonetaryGrant
    159 sg:grant.9184942 http://pending.schema.org/fundedItem sg:pub.10.1007/s00704-018-2700-5
    160 rdf:type schema:MonetaryGrant
    161 sg:journal.1086664 schema:issn 0177-798X
    162 1434-4483
    163 schema:name Theoretical and Applied Climatology
    164 schema:publisher Springer Nature
    165 rdf:type schema:Periodical
    166 sg:person.011216367545.69 schema:affiliation grid-institutes:None
    167 schema:familyName Niedoroda
    168 schema:givenName Alan W.
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011216367545.69
    170 rdf:type schema:Person
    171 sg:person.012556140447.41 schema:affiliation grid-institutes:grid.258164.c
    172 schema:familyName Hu
    173 schema:givenName Bill X.
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41
    175 rdf:type schema:Person
    176 sg:person.013420450661.39 schema:affiliation grid-institutes:grid.258164.c
    177 schema:familyName Niu
    178 schema:givenName Jie
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013420450661.39
    180 rdf:type schema:Person
    181 sg:person.014637520770.82 schema:affiliation grid-institutes:grid.451303.0
    182 schema:familyName Chen
    183 schema:givenName Xingyuan
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637520770.82
    185 rdf:type schema:Person
    186 sg:person.016353443723.08 schema:affiliation grid-institutes:grid.258164.c
    187 schema:familyName Dai
    188 schema:givenName Heng
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016353443723.08
    190 rdf:type schema:Person
    191 sg:person.016425122141.09 schema:affiliation grid-institutes:grid.255986.5
    192 schema:familyName Ye
    193 schema:givenName Ming
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425122141.09
    195 rdf:type schema:Person
    196 sg:person.07444420313.41 schema:affiliation grid-institutes:grid.451303.0
    197 schema:familyName Song
    198 schema:givenName Xuehang
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07444420313.41
    200 rdf:type schema:Person
    201 sg:pub.10.1007/s00382-008-0507-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022370353
    202 https://doi.org/10.1007/s00382-008-0507-2
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s00382-010-0810-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001203373
    205 https://doi.org/10.1007/s00382-010-0810-6
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s00477-009-0350-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018913838
    208 https://doi.org/10.1007/s00477-009-0350-y
    209 rdf:type schema:CreativeWork
    210 grid-institutes:None schema:alternateName Wyndham Consultants, LLC, 32312, Tallahassee, FL, USA
    211 schema:name Wyndham Consultants, LLC, 32312, Tallahassee, FL, USA
    212 rdf:type schema:Organization
    213 grid-institutes:grid.255986.5 schema:alternateName Department of Scientific Computing and Geophysical Fluid Dynamics Institute, Florida State University, 32306, Tallahassee, FL, USA
    214 schema:name Department of Scientific Computing and Geophysical Fluid Dynamics Institute, Florida State University, 32306, Tallahassee, FL, USA
    215 rdf:type schema:Organization
    216 grid-institutes:grid.258164.c schema:alternateName Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China
    217 schema:name Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China
    218 rdf:type schema:Organization
    219 grid-institutes:grid.451303.0 schema:alternateName Pacific Northwest National Laboratory, 99352, Richland, WA, USA
    220 schema:name Pacific Northwest National Laboratory, 99352, Richland, WA, USA
    221 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...