Hierarchical sensitivity analysis for simulating barrier island geomorphologic responses to future storms and sea-level rise View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-09

AUTHORS

Heng Dai, Ming Ye, Bill X. Hu, Alan W. Niedoroda, Xiaoying Zhang, Xingyuan Chen, Xuehang Song, Jie Niu

ABSTRACT

This paper presents a new application of an advanced hierarchical sensitivity analysis of a new climate model of barrier island geomorphological evolution. The implemented sensitivity analysis in this study integrates a hierarchical uncertainty framework with a variance-based global sensitivity analysis to decompose the different model input uncertainties. The analysis can provide quantitative and accurate measurements for the relative importance of uncertain model input factors while considering their dependence relationships. The climate model used in this research was the barrier island profile (BIP) model, which is a new computer code developed to simulate barrier island morphological evolution over periods ranging from years to decades under the impacts of accelerated future sea-level rise and long-term changes in the storm climate. In the application of the model, the BIP model was used to evaluate the responses of a series of barrier island cross-sections derived for Santa Rosa Island, Florida, to random storm events and five potential accelerated rates of sea-level rise projected over the next century. The uncertain model input factors thus include the scenario uncertainty caused by alternative future sea-level rise scenarios and the parametric uncertainties of random storm parameters and dune characteristics. The study results reveal that the occurrence of storms is the most important factor for the evolution of sand dunes on the barrier island and the impact of sea-level rise is essential to the morphological change of the island backshore environment. The analysis can provide helpful insights for coastal management and planning. This hierarchical sensitivity analysis is mathematically general and rigorous and can be applied to a wide range of climate models. More... »

PAGES

1495-1511

References to SciGraph publications

  • 2009-01-06. Reconstructing sea level from paleo and projected temperatures 200 to 2100 ad in CLIMATE DYNAMICS
  • 2010-04-11. The potential to narrow uncertainty in projections of regional precipitation change in CLIMATE DYNAMICS
  • 2009-10-10. Forecasting skill of model averages in STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00704-018-2700-5

    DOI

    http://dx.doi.org/10.1007/s00704-018-2700-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1109797515


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China", 
              "id": "http://www.grid.ac/institutes/grid.258164.c", 
              "name": [
                "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dai", 
            "givenName": "Heng", 
            "id": "sg:person.016353443723.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016353443723.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Scientific Computing and Geophysical Fluid Dynamics Institute, Florida State University, 32306, Tallahassee, FL, USA", 
              "id": "http://www.grid.ac/institutes/grid.255986.5", 
              "name": [
                "Department of Scientific Computing and Geophysical Fluid Dynamics Institute, Florida State University, 32306, Tallahassee, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ye", 
            "givenName": "Ming", 
            "id": "sg:person.016425122141.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425122141.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China", 
              "id": "http://www.grid.ac/institutes/grid.258164.c", 
              "name": [
                "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Bill X.", 
            "id": "sg:person.012556140447.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wyndham Consultants, LLC, 32312, Tallahassee, FL, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Wyndham Consultants, LLC, 32312, Tallahassee, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Niedoroda", 
            "givenName": "Alan W.", 
            "id": "sg:person.011216367545.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011216367545.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China", 
              "id": "http://www.grid.ac/institutes/grid.258164.c", 
              "name": [
                "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Xiaoying", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pacific Northwest National Laboratory, 99352, Richland, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.451303.0", 
              "name": [
                "Pacific Northwest National Laboratory, 99352, Richland, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Xingyuan", 
            "id": "sg:person.014637520770.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637520770.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pacific Northwest National Laboratory, 99352, Richland, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.451303.0", 
              "name": [
                "Pacific Northwest National Laboratory, 99352, Richland, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Xuehang", 
            "id": "sg:person.07444420313.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07444420313.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China", 
              "id": "http://www.grid.ac/institutes/grid.258164.c", 
              "name": [
                "Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Niu", 
            "givenName": "Jie", 
            "id": "sg:person.013420450661.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013420450661.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00382-008-0507-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022370353", 
              "https://doi.org/10.1007/s00382-008-0507-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0810-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001203373", 
              "https://doi.org/10.1007/s00382-010-0810-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00477-009-0350-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018913838", 
              "https://doi.org/10.1007/s00477-009-0350-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11-09", 
        "datePublishedReg": "2018-11-09", 
        "description": "This paper presents a new application of an advanced hierarchical sensitivity analysis of a new climate model of barrier island geomorphological evolution. The implemented sensitivity analysis in this study integrates a hierarchical uncertainty framework with a variance-based global sensitivity analysis to decompose the different model input uncertainties. The analysis can provide quantitative and accurate measurements for the relative importance of uncertain model input factors while considering their dependence relationships. The climate model used in this research was the barrier island profile (BIP) model, which is a new computer code developed to simulate barrier island morphological evolution over periods ranging from years to decades under the impacts of accelerated future sea-level rise and long-term changes in the storm climate. In the application of the model, the BIP model was used to evaluate the responses of a series of barrier island cross-sections derived for Santa Rosa Island, Florida, to random storm events and five potential accelerated rates of sea-level rise projected over the next century. The uncertain model input factors thus include the scenario uncertainty caused by alternative future sea-level rise scenarios and the parametric uncertainties of random storm parameters and dune characteristics. The study results reveal that the occurrence of storms is the most important factor for the evolution of sand dunes on the barrier island and the impact of sea-level rise is essential to the morphological change of the island backshore environment. The analysis can provide helpful insights for coastal management and planning. This hierarchical sensitivity analysis is mathematically general and rigorous and can be applied to a wide range of climate models.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00704-018-2700-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9184942", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4321653", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1086664", 
            "issn": [
              "0177-798X", 
              "1434-4483"
            ], 
            "name": "Theoretical and Applied Climatology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "136"
          }
        ], 
        "keywords": [
          "sea-level rise", 
          "hierarchical sensitivity analysis", 
          "climate models", 
          "model input factors", 
          "future sea-level rise scenarios", 
          "future sea-level rise", 
          "sea-level rise scenarios", 
          "new climate model", 
          "random storm events", 
          "occurrence of storms", 
          "Santa Rosa Island", 
          "long-term changes", 
          "backshore environment", 
          "geomorphological evolution", 
          "storm climate", 
          "storm parameters", 
          "rise scenarios", 
          "geomorphologic response", 
          "storm events", 
          "barrier islands", 
          "future storms", 
          "model input uncertainty", 
          "scenario uncertainty", 
          "dune characteristics", 
          "sand dunes", 
          "coastal management", 
          "next century", 
          "uncertainty framework", 
          "storms", 
          "morphological evolution", 
          "variance-based global sensitivity analysis", 
          "sensitivity analysis", 
          "islands", 
          "input uncertainty", 
          "profile model", 
          "global sensitivity analysis", 
          "evolution", 
          "relative importance", 
          "new computer code", 
          "input factors", 
          "uncertainty", 
          "dunes", 
          "climate", 
          "accelerated rate", 
          "rise", 
          "BIP model", 
          "events", 
          "Florida", 
          "occurrence", 
          "changes", 
          "model", 
          "impact", 
          "Cross-Section", 
          "important factor", 
          "century", 
          "wide range", 
          "scenarios", 
          "period", 
          "accurate measurement", 
          "environment", 
          "analysis", 
          "decades", 
          "series", 
          "study results", 
          "range", 
          "measurements", 
          "computer code", 
          "years", 
          "insights", 
          "characteristics", 
          "morphological changes", 
          "importance", 
          "relationship", 
          "helpful insights", 
          "response", 
          "parametric uncertainties", 
          "dependence relationships", 
          "factors", 
          "parameters", 
          "rate", 
          "planning", 
          "results", 
          "study", 
          "framework", 
          "management", 
          "applications", 
          "research", 
          "new applications", 
          "paper", 
          "code", 
          "advanced hierarchical sensitivity analysis", 
          "barrier island geomorphological evolution", 
          "island geomorphological evolution", 
          "hierarchical uncertainty framework", 
          "different model input uncertainties", 
          "uncertain model input factors", 
          "barrier island profile (BIP) model", 
          "island profile (BIP) model", 
          "barrier island morphological evolution", 
          "island morphological evolution", 
          "barrier island cross-sections", 
          "island cross-sections", 
          "Rosa Island", 
          "potential accelerated rates", 
          "alternative future sea-level rise scenarios", 
          "random storm parameters", 
          "island backshore environment", 
          "barrier island geomorphologic responses", 
          "island geomorphologic responses"
        ], 
        "name": "Hierarchical sensitivity analysis for simulating barrier island geomorphologic responses to future storms and sea-level rise", 
        "pagination": "1495-1511", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1109797515"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00704-018-2700-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00704-018-2700-5", 
          "https://app.dimensions.ai/details/publication/pub.1109797515"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_786.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00704-018-2700-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2700-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2700-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2700-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2700-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    240 TRIPLES      22 PREDICATES      137 URIs      126 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00704-018-2700-5 schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author N6b34e9d842de486e970ec318115c9537
    4 schema:citation sg:pub.10.1007/s00382-008-0507-2
    5 sg:pub.10.1007/s00382-010-0810-6
    6 sg:pub.10.1007/s00477-009-0350-y
    7 schema:datePublished 2018-11-09
    8 schema:datePublishedReg 2018-11-09
    9 schema:description This paper presents a new application of an advanced hierarchical sensitivity analysis of a new climate model of barrier island geomorphological evolution. The implemented sensitivity analysis in this study integrates a hierarchical uncertainty framework with a variance-based global sensitivity analysis to decompose the different model input uncertainties. The analysis can provide quantitative and accurate measurements for the relative importance of uncertain model input factors while considering their dependence relationships. The climate model used in this research was the barrier island profile (BIP) model, which is a new computer code developed to simulate barrier island morphological evolution over periods ranging from years to decades under the impacts of accelerated future sea-level rise and long-term changes in the storm climate. In the application of the model, the BIP model was used to evaluate the responses of a series of barrier island cross-sections derived for Santa Rosa Island, Florida, to random storm events and five potential accelerated rates of sea-level rise projected over the next century. The uncertain model input factors thus include the scenario uncertainty caused by alternative future sea-level rise scenarios and the parametric uncertainties of random storm parameters and dune characteristics. The study results reveal that the occurrence of storms is the most important factor for the evolution of sand dunes on the barrier island and the impact of sea-level rise is essential to the morphological change of the island backshore environment. The analysis can provide helpful insights for coastal management and planning. This hierarchical sensitivity analysis is mathematically general and rigorous and can be applied to a wide range of climate models.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N3bbe2aa93f9e4895af7617e7edcd00cf
    14 N3e7f60e0b9cb47b4a73663a4d68de9ed
    15 sg:journal.1086664
    16 schema:keywords BIP model
    17 Cross-Section
    18 Florida
    19 Rosa Island
    20 Santa Rosa Island
    21 accelerated rate
    22 accurate measurement
    23 advanced hierarchical sensitivity analysis
    24 alternative future sea-level rise scenarios
    25 analysis
    26 applications
    27 backshore environment
    28 barrier island cross-sections
    29 barrier island geomorphologic responses
    30 barrier island geomorphological evolution
    31 barrier island morphological evolution
    32 barrier island profile (BIP) model
    33 barrier islands
    34 century
    35 changes
    36 characteristics
    37 climate
    38 climate models
    39 coastal management
    40 code
    41 computer code
    42 decades
    43 dependence relationships
    44 different model input uncertainties
    45 dune characteristics
    46 dunes
    47 environment
    48 events
    49 evolution
    50 factors
    51 framework
    52 future sea-level rise
    53 future sea-level rise scenarios
    54 future storms
    55 geomorphologic response
    56 geomorphological evolution
    57 global sensitivity analysis
    58 helpful insights
    59 hierarchical sensitivity analysis
    60 hierarchical uncertainty framework
    61 impact
    62 importance
    63 important factor
    64 input factors
    65 input uncertainty
    66 insights
    67 island backshore environment
    68 island cross-sections
    69 island geomorphologic responses
    70 island geomorphological evolution
    71 island morphological evolution
    72 island profile (BIP) model
    73 islands
    74 long-term changes
    75 management
    76 measurements
    77 model
    78 model input factors
    79 model input uncertainty
    80 morphological changes
    81 morphological evolution
    82 new applications
    83 new climate model
    84 new computer code
    85 next century
    86 occurrence
    87 occurrence of storms
    88 paper
    89 parameters
    90 parametric uncertainties
    91 period
    92 planning
    93 potential accelerated rates
    94 profile model
    95 random storm events
    96 random storm parameters
    97 range
    98 rate
    99 relationship
    100 relative importance
    101 research
    102 response
    103 results
    104 rise
    105 rise scenarios
    106 sand dunes
    107 scenario uncertainty
    108 scenarios
    109 sea-level rise
    110 sea-level rise scenarios
    111 sensitivity analysis
    112 series
    113 storm climate
    114 storm events
    115 storm parameters
    116 storms
    117 study
    118 study results
    119 uncertain model input factors
    120 uncertainty
    121 uncertainty framework
    122 variance-based global sensitivity analysis
    123 wide range
    124 years
    125 schema:name Hierarchical sensitivity analysis for simulating barrier island geomorphologic responses to future storms and sea-level rise
    126 schema:pagination 1495-1511
    127 schema:productId N3be802f147fc4b8d95ec4d1813280973
    128 Nb616ca52d9064f08911f4e5037af9933
    129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109797515
    130 https://doi.org/10.1007/s00704-018-2700-5
    131 schema:sdDatePublished 2022-01-01T18:46
    132 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    133 schema:sdPublisher N1854082cf5974d69bb7ceff25269dce7
    134 schema:url https://doi.org/10.1007/s00704-018-2700-5
    135 sgo:license sg:explorer/license/
    136 sgo:sdDataset articles
    137 rdf:type schema:ScholarlyArticle
    138 N0248dc64e9bc48089d5a49324d4709cd schema:affiliation grid-institutes:grid.258164.c
    139 schema:familyName Zhang
    140 schema:givenName Xiaoying
    141 rdf:type schema:Person
    142 N1854082cf5974d69bb7ceff25269dce7 schema:name Springer Nature - SN SciGraph project
    143 rdf:type schema:Organization
    144 N1a19411416954ecfa361e81e656bae38 rdf:first sg:person.013420450661.39
    145 rdf:rest rdf:nil
    146 N2a1042e7dd6a4285b428eb18fa96fc3c rdf:first sg:person.016425122141.09
    147 rdf:rest N4e8464c3b0bb4b96a82672faef63a2bd
    148 N3bbe2aa93f9e4895af7617e7edcd00cf schema:issueNumber 3-4
    149 rdf:type schema:PublicationIssue
    150 N3be802f147fc4b8d95ec4d1813280973 schema:name doi
    151 schema:value 10.1007/s00704-018-2700-5
    152 rdf:type schema:PropertyValue
    153 N3e7f60e0b9cb47b4a73663a4d68de9ed schema:volumeNumber 136
    154 rdf:type schema:PublicationVolume
    155 N4e8464c3b0bb4b96a82672faef63a2bd rdf:first sg:person.012556140447.41
    156 rdf:rest N702273cbb1734c549088437330998a1e
    157 N59000dbcad704d549dbd55d2c406a6ed rdf:first sg:person.014637520770.82
    158 rdf:rest N7de949f526a54e27825812ded5bcee26
    159 N6b34e9d842de486e970ec318115c9537 rdf:first sg:person.016353443723.08
    160 rdf:rest N2a1042e7dd6a4285b428eb18fa96fc3c
    161 N702273cbb1734c549088437330998a1e rdf:first sg:person.011216367545.69
    162 rdf:rest Ndd5d14c0348f43caa096069096518973
    163 N7de949f526a54e27825812ded5bcee26 rdf:first sg:person.07444420313.41
    164 rdf:rest N1a19411416954ecfa361e81e656bae38
    165 Nb616ca52d9064f08911f4e5037af9933 schema:name dimensions_id
    166 schema:value pub.1109797515
    167 rdf:type schema:PropertyValue
    168 Ndd5d14c0348f43caa096069096518973 rdf:first N0248dc64e9bc48089d5a49324d4709cd
    169 rdf:rest N59000dbcad704d549dbd55d2c406a6ed
    170 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Earth Sciences
    172 rdf:type schema:DefinedTerm
    173 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Physical Geography and Environmental Geoscience
    175 rdf:type schema:DefinedTerm
    176 sg:grant.4321653 http://pending.schema.org/fundedItem sg:pub.10.1007/s00704-018-2700-5
    177 rdf:type schema:MonetaryGrant
    178 sg:grant.9184942 http://pending.schema.org/fundedItem sg:pub.10.1007/s00704-018-2700-5
    179 rdf:type schema:MonetaryGrant
    180 sg:journal.1086664 schema:issn 0177-798X
    181 1434-4483
    182 schema:name Theoretical and Applied Climatology
    183 schema:publisher Springer Nature
    184 rdf:type schema:Periodical
    185 sg:person.011216367545.69 schema:affiliation grid-institutes:None
    186 schema:familyName Niedoroda
    187 schema:givenName Alan W.
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011216367545.69
    189 rdf:type schema:Person
    190 sg:person.012556140447.41 schema:affiliation grid-institutes:grid.258164.c
    191 schema:familyName Hu
    192 schema:givenName Bill X.
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41
    194 rdf:type schema:Person
    195 sg:person.013420450661.39 schema:affiliation grid-institutes:grid.258164.c
    196 schema:familyName Niu
    197 schema:givenName Jie
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013420450661.39
    199 rdf:type schema:Person
    200 sg:person.014637520770.82 schema:affiliation grid-institutes:grid.451303.0
    201 schema:familyName Chen
    202 schema:givenName Xingyuan
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637520770.82
    204 rdf:type schema:Person
    205 sg:person.016353443723.08 schema:affiliation grid-institutes:grid.258164.c
    206 schema:familyName Dai
    207 schema:givenName Heng
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016353443723.08
    209 rdf:type schema:Person
    210 sg:person.016425122141.09 schema:affiliation grid-institutes:grid.255986.5
    211 schema:familyName Ye
    212 schema:givenName Ming
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425122141.09
    214 rdf:type schema:Person
    215 sg:person.07444420313.41 schema:affiliation grid-institutes:grid.451303.0
    216 schema:familyName Song
    217 schema:givenName Xuehang
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07444420313.41
    219 rdf:type schema:Person
    220 sg:pub.10.1007/s00382-008-0507-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022370353
    221 https://doi.org/10.1007/s00382-008-0507-2
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s00382-010-0810-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001203373
    224 https://doi.org/10.1007/s00382-010-0810-6
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s00477-009-0350-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018913838
    227 https://doi.org/10.1007/s00477-009-0350-y
    228 rdf:type schema:CreativeWork
    229 grid-institutes:None schema:alternateName Wyndham Consultants, LLC, 32312, Tallahassee, FL, USA
    230 schema:name Wyndham Consultants, LLC, 32312, Tallahassee, FL, USA
    231 rdf:type schema:Organization
    232 grid-institutes:grid.255986.5 schema:alternateName Department of Scientific Computing and Geophysical Fluid Dynamics Institute, Florida State University, 32306, Tallahassee, FL, USA
    233 schema:name Department of Scientific Computing and Geophysical Fluid Dynamics Institute, Florida State University, 32306, Tallahassee, FL, USA
    234 rdf:type schema:Organization
    235 grid-institutes:grid.258164.c schema:alternateName Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China
    236 schema:name Institute of Groundwater and Earth Sciences, Jinan University, 32306, Guangzhou, Guangdong, China
    237 rdf:type schema:Organization
    238 grid-institutes:grid.451303.0 schema:alternateName Pacific Northwest National Laboratory, 99352, Richland, WA, USA
    239 schema:name Pacific Northwest National Laboratory, 99352, Richland, WA, USA
    240 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...