Statistical classification of streamflow based on flow variability in west flowing rivers of Kerala, India View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-07

AUTHORS

T. K. Drissia, V. Jothiprakash, A. B. Anitha

ABSTRACT

Measured streamflow and flood series of 43 gauging stations from 25 west flowing rivers in Kerala, India, were analysed for their descriptive characteristics to study their spatial and temporal variation. The spatial and temporal variations in streamflow are influenced by many factors including climatic and basin characteristics. Streamflow data from each station (length varies from 14 to 43 years) is analysed for their internal characteristics such as trend, stationarity, homogeneity, noise and periodicity to incorporate it in hydrological models, so that their predictions would be more accurate. The internal characteristics were studied along with the statistical analysis. For analysing each internal characteristic, more than one method of analysis has been used to have reliable result. The trend characteristic was analysed using Mann-Kendall (MK) test, Sen’s slope test, Spearman’s rank correlation coefficient and Pearson correlation coefficient methods. Stationarity characteristics have been tested using augmented Dickey-Fuller test (ADF), Phillips-Perron test and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. For identifying homogeneous nature, Pettitt test, standard normal homogeneity (SNH) test, Buishand test and von Neumann tests were used. Noise in the streamflow was verified using Box-Peirce, Ljung-Box and McLeod-Li tests. From the study, it is found that the daily series is non-homogeneous, stationary data with white noise, whereas flood series shows mixed characteristics. Based on the variations in the time series, the daily streamflow and flood series are classified into different categories such as high, average, moderate, minor and no variation stations. In most of the river basins, daily flow shows average variation. Flood series shows average variation in 44% of stations and moderate variation in 28% of stations. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00704-018-2677-0

DOI

http://dx.doi.org/10.1007/s00704-018-2677-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109759318


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Bombay", 
          "id": "https://www.grid.ac/institutes/grid.417971.d", 
          "name": [
            "Indian Institute of Technology, Bombay, Powai, Maharashtra, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drissia", 
        "givenName": "T. K.", 
        "id": "sg:person.013672675032.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013672675032.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Bombay", 
          "id": "https://www.grid.ac/institutes/grid.417971.d", 
          "name": [
            "Indian Institute of Technology, Bombay, Powai, Maharashtra, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jothiprakash", 
        "givenName": "V.", 
        "id": "sg:person.012053740321.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053740321.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Water Resources Development and Management", 
          "id": "https://www.grid.ac/institutes/grid.464826.a", 
          "name": [
            "Centre for Water Resources Development and Management, Kozhikode, Kerala, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anitha", 
        "givenName": "A. B.", 
        "id": "sg:person.015533010457.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015533010457.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2012.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000418228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9892.1983.tb00373.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003343622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2005.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003803704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2005.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003803704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2014.01.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004377409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2008.12.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005087212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-003-0018-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006745432", 
          "https://doi.org/10.1007/s00704-003-0018-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/08-aoas159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012915280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1412159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013196071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asl2.569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013304324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/713848278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013984594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2012.05.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014391487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-016-1875-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015003491", 
          "https://doi.org/10.1007/s00704-016-1875-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-016-1875-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015003491", 
          "https://doi.org/10.1007/s00704-016-1875-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(01)00594-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019659066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/adgeo-25-155-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023066681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-012-0192-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025596773", 
          "https://doi.org/10.1007/s11269-012-0192-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4076(92)90104-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026133341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2011.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028676418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2011.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028676418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4038/jas.v4i1.1641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029447388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4038/jas.v4i1.1641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029447388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-016-1924-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030133519", 
          "https://doi.org/10.1007/s00704-016-1924-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-016-1924-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030133519", 
          "https://doi.org/10.1007/s00704-016-1924-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2011.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030810707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0088(199701)17:1<25::aid-joc103>3.0.co;2-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031273166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0088(199701)17:1<25::aid-joc103>3.0.co;2-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031273166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032864469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-349-03467-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034149823", 
          "https://doi.org/10.1007/978-1-349-03467-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-349-03467-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034149823", 
          "https://doi.org/10.1007/978-1-349-03467-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2008.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034299088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.2088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040241939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2011.11.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042477384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.10983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042744957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2003.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049106220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/tm003i001p00013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051170040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-015-1701-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052283337", 
          "https://doi.org/10.1007/s00704-015-1701-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-011-9913-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053146615", 
          "https://doi.org/10.1007/s11269-011-9913-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)he.1943-5584.0001474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057635049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1968.10480934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1970.10481180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/65.2.297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/75.2.335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2005.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177731677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064402395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-017-2095-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084023081", 
          "https://doi.org/10.1007/s00704-017-2095-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-017-2095-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084023081", 
          "https://doi.org/10.1007/s00704-017-2095-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09715010.2017.1333045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085867087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2017.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086031336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420036206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095905324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2346729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2346729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.2195345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102366835"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-07", 
    "datePublishedReg": "2018-11-07", 
    "description": "Measured streamflow and flood series of 43 gauging stations from 25 west flowing rivers in Kerala, India, were analysed for their descriptive characteristics to study their spatial and temporal variation. The spatial and temporal variations in streamflow are influenced by many factors including climatic and basin characteristics. Streamflow data from each station (length varies from 14 to 43 years) is analysed for their internal characteristics such as trend, stationarity, homogeneity, noise and periodicity to incorporate it in hydrological models, so that their predictions would be more accurate. The internal characteristics were studied along with the statistical analysis. For analysing each internal characteristic, more than one method of analysis has been used to have reliable result. The trend characteristic was analysed using Mann-Kendall (MK) test, Sen\u2019s slope test, Spearman\u2019s rank correlation coefficient and Pearson correlation coefficient methods. Stationarity characteristics have been tested using augmented Dickey-Fuller test (ADF), Phillips-Perron test and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. For identifying homogeneous nature, Pettitt test, standard normal homogeneity (SNH) test, Buishand test and von Neumann tests were used. Noise in the streamflow was verified using Box-Peirce, Ljung-Box and McLeod-Li tests. From the study, it is found that the daily series is non-homogeneous, stationary data with white noise, whereas flood series shows mixed characteristics. Based on the variations in the time series, the daily streamflow and flood series are classified into different categories such as high, average, moderate, minor and no variation stations. In most of the river basins, daily flow shows average variation. Flood series shows average variation in 44% of stations and moderate variation in 28% of stations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00704-018-2677-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1086664", 
        "issn": [
          "0177-798X", 
          "1434-4483"
        ], 
        "name": "Theoretical and Applied Climatology", 
        "type": "Periodical"
      }
    ], 
    "name": "Statistical classification of streamflow based on flow variability in west flowing rivers of Kerala, India", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ed6c9b025f03f20c7c859f57a16d0dd3d59c4fcdd67de444752517eb136d1a4d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00704-018-2677-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109759318"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00704-018-2677-0", 
      "https://app.dimensions.ai/details/publication/pub.1109759318"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000610.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00704-018-2677-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2677-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2677-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2677-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2677-0'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      68 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00704-018-2677-0 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N6345d30293fc4238bf6a13fcdce27285
4 schema:citation sg:pub.10.1007/978-1-349-03467-3
5 sg:pub.10.1007/s00704-003-0018-3
6 sg:pub.10.1007/s00704-015-1701-x
7 sg:pub.10.1007/s00704-016-1875-x
8 sg:pub.10.1007/s00704-016-1924-5
9 sg:pub.10.1007/s00704-017-2095-8
10 sg:pub.10.1007/s11269-011-9913-z
11 sg:pub.10.1007/s11269-012-0192-0
12 https://doi.org/10.1002/(sici)1097-0088(199701)17:1<25::aid-joc103>3.0.co;2-j
13 https://doi.org/10.1002/asl2.569
14 https://doi.org/10.1002/hyp.10983
15 https://doi.org/10.1002/joc.1640
16 https://doi.org/10.1002/joc.2088
17 https://doi.org/10.1016/0304-4076(92)90104-y
18 https://doi.org/10.1016/j.atmosenv.2008.12.053
19 https://doi.org/10.1016/j.gloplacha.2012.12.003
20 https://doi.org/10.1016/j.jhydrol.2003.11.006
21 https://doi.org/10.1016/j.jhydrol.2005.06.008
22 https://doi.org/10.1016/j.jhydrol.2008.12.025
23 https://doi.org/10.1016/j.jhydrol.2011.11.023
24 https://doi.org/10.1016/j.jhydrol.2011.11.047
25 https://doi.org/10.1016/j.jhydrol.2011.12.006
26 https://doi.org/10.1016/j.jhydrol.2012.05.066
27 https://doi.org/10.1016/j.jhydrol.2014.01.041
28 https://doi.org/10.1016/j.jhydrol.2017.06.015
29 https://doi.org/10.1016/s0022-1694(01)00594-7
30 https://doi.org/10.1029/tm003i001p00013
31 https://doi.org/10.1061/(asce)he.1943-5584.0001474
32 https://doi.org/10.1080/01621459.1968.10480934
33 https://doi.org/10.1080/01621459.1970.10481180
34 https://doi.org/10.1080/09715010.2017.1333045
35 https://doi.org/10.1080/713848278
36 https://doi.org/10.1093/biomet/65.2.297
37 https://doi.org/10.1093/biomet/75.2.335
38 https://doi.org/10.1109/tkde.2005.114
39 https://doi.org/10.1111/j.1467-9892.1983.tb00373.x
40 https://doi.org/10.1201/9781420036206
41 https://doi.org/10.1214/08-aoas159
42 https://doi.org/10.1214/aoms/1177731677
43 https://doi.org/10.2139/ssrn.2195345
44 https://doi.org/10.2307/1412159
45 https://doi.org/10.2307/2346729
46 https://doi.org/10.4038/jas.v4i1.1641
47 https://doi.org/10.5194/adgeo-25-155-2010
48 schema:datePublished 2018-11-07
49 schema:datePublishedReg 2018-11-07
50 schema:description Measured streamflow and flood series of 43 gauging stations from 25 west flowing rivers in Kerala, India, were analysed for their descriptive characteristics to study their spatial and temporal variation. The spatial and temporal variations in streamflow are influenced by many factors including climatic and basin characteristics. Streamflow data from each station (length varies from 14 to 43 years) is analysed for their internal characteristics such as trend, stationarity, homogeneity, noise and periodicity to incorporate it in hydrological models, so that their predictions would be more accurate. The internal characteristics were studied along with the statistical analysis. For analysing each internal characteristic, more than one method of analysis has been used to have reliable result. The trend characteristic was analysed using Mann-Kendall (MK) test, Sen’s slope test, Spearman’s rank correlation coefficient and Pearson correlation coefficient methods. Stationarity characteristics have been tested using augmented Dickey-Fuller test (ADF), Phillips-Perron test and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. For identifying homogeneous nature, Pettitt test, standard normal homogeneity (SNH) test, Buishand test and von Neumann tests were used. Noise in the streamflow was verified using Box-Peirce, Ljung-Box and McLeod-Li tests. From the study, it is found that the daily series is non-homogeneous, stationary data with white noise, whereas flood series shows mixed characteristics. Based on the variations in the time series, the daily streamflow and flood series are classified into different categories such as high, average, moderate, minor and no variation stations. In most of the river basins, daily flow shows average variation. Flood series shows average variation in 44% of stations and moderate variation in 28% of stations.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf sg:journal.1086664
55 schema:name Statistical classification of streamflow based on flow variability in west flowing rivers of Kerala, India
56 schema:pagination 1-16
57 schema:productId N0276993eb6ae4c3fb71292b85d18126b
58 N309e181b8bbe47d7be725bb41b7417fd
59 N6125ccc6116b419993f38931a40b8a72
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109759318
61 https://doi.org/10.1007/s00704-018-2677-0
62 schema:sdDatePublished 2019-04-10T18:33
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N927afe2bb9a6485abbc7a5a2320acab3
65 schema:url https://link.springer.com/10.1007%2Fs00704-018-2677-0
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N026941f9e46f46d0a75f16e8166bd3c0 rdf:first sg:person.015533010457.49
70 rdf:rest rdf:nil
71 N0276993eb6ae4c3fb71292b85d18126b schema:name doi
72 schema:value 10.1007/s00704-018-2677-0
73 rdf:type schema:PropertyValue
74 N309e181b8bbe47d7be725bb41b7417fd schema:name readcube_id
75 schema:value ed6c9b025f03f20c7c859f57a16d0dd3d59c4fcdd67de444752517eb136d1a4d
76 rdf:type schema:PropertyValue
77 N6125ccc6116b419993f38931a40b8a72 schema:name dimensions_id
78 schema:value pub.1109759318
79 rdf:type schema:PropertyValue
80 N6345d30293fc4238bf6a13fcdce27285 rdf:first sg:person.013672675032.53
81 rdf:rest Ndaa3c2b70f574d87bf8246d60d4fbd11
82 N927afe2bb9a6485abbc7a5a2320acab3 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Ndaa3c2b70f574d87bf8246d60d4fbd11 rdf:first sg:person.012053740321.23
85 rdf:rest N026941f9e46f46d0a75f16e8166bd3c0
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
90 schema:name Statistics
91 rdf:type schema:DefinedTerm
92 sg:journal.1086664 schema:issn 0177-798X
93 1434-4483
94 schema:name Theoretical and Applied Climatology
95 rdf:type schema:Periodical
96 sg:person.012053740321.23 schema:affiliation https://www.grid.ac/institutes/grid.417971.d
97 schema:familyName Jothiprakash
98 schema:givenName V.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053740321.23
100 rdf:type schema:Person
101 sg:person.013672675032.53 schema:affiliation https://www.grid.ac/institutes/grid.417971.d
102 schema:familyName Drissia
103 schema:givenName T. K.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013672675032.53
105 rdf:type schema:Person
106 sg:person.015533010457.49 schema:affiliation https://www.grid.ac/institutes/grid.464826.a
107 schema:familyName Anitha
108 schema:givenName A. B.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015533010457.49
110 rdf:type schema:Person
111 sg:pub.10.1007/978-1-349-03467-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034149823
112 https://doi.org/10.1007/978-1-349-03467-3
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00704-003-0018-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006745432
115 https://doi.org/10.1007/s00704-003-0018-3
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00704-015-1701-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052283337
118 https://doi.org/10.1007/s00704-015-1701-x
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00704-016-1875-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015003491
121 https://doi.org/10.1007/s00704-016-1875-x
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00704-016-1924-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030133519
124 https://doi.org/10.1007/s00704-016-1924-5
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00704-017-2095-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084023081
127 https://doi.org/10.1007/s00704-017-2095-8
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11269-011-9913-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053146615
130 https://doi.org/10.1007/s11269-011-9913-z
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s11269-012-0192-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025596773
133 https://doi.org/10.1007/s11269-012-0192-0
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/(sici)1097-0088(199701)17:1<25::aid-joc103>3.0.co;2-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1031273166
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/asl2.569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013304324
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/hyp.10983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042744957
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/joc.1640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032864469
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/joc.2088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040241939
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0304-4076(92)90104-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1026133341
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.atmosenv.2008.12.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005087212
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.gloplacha.2012.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000418228
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jhydrol.2003.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049106220
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.jhydrol.2005.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003803704
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jhydrol.2008.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034299088
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jhydrol.2011.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028676418
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jhydrol.2011.11.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042477384
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jhydrol.2011.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030810707
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.jhydrol.2012.05.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014391487
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.jhydrol.2014.01.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004377409
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.jhydrol.2017.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086031336
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0022-1694(01)00594-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019659066
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1029/tm003i001p00013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051170040
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1061/(asce)he.1943-5584.0001474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057635049
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1080/01621459.1968.10480934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300261
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1080/01621459.1970.10481180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300664
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1080/09715010.2017.1333045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085867087
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1080/713848278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013984594
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/biomet/65.2.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418747
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/biomet/75.2.335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419818
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tkde.2005.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661368
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1111/j.1467-9892.1983.tb00373.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003343622
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1201/9781420036206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095905324
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1214/08-aoas159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012915280
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1214/aoms/1177731677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064402395
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2139/ssrn.2195345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102366835
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2307/1412159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013196071
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2307/2346729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982435
202 rdf:type schema:CreativeWork
203 https://doi.org/10.4038/jas.v4i1.1641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029447388
204 rdf:type schema:CreativeWork
205 https://doi.org/10.5194/adgeo-25-155-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023066681
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.417971.d schema:alternateName Indian Institute of Technology Bombay
208 schema:name Indian Institute of Technology, Bombay, Powai, Maharashtra, India
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.464826.a schema:alternateName Centre for Water Resources Development and Management
211 schema:name Centre for Water Resources Development and Management, Kozhikode, Kerala, India
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...