Ontology type: schema:ScholarlyArticle Open Access: True
2018-02-20
AUTHORS ABSTRACTThe wind speed variability in the North Atlantic has been successfully modelled using a spatio-temporal transformed Gaussian field. However, this type of model does not correctly describe the extreme wind speeds attributed to tropical storms and hurricanes. In this study, the transformed Gaussian model is further developed to include the occurrence of severe storms. In this new model, random components are added to the transformed Gaussian field to model rare events with extreme wind speeds. The resulting random field is locally stationary and homogeneous. The localized dependence structure is described by time- and space-dependent parameters. The parameters have a natural physical interpretation. To exemplify its application, the model is fitted to the ECMWF ERA-Interim reanalysis data set. The model is applied to compute long-term wind speed distributions and return values, e.g., 100- or 1000-year extreme wind speeds, and to simulate random wind speed time series at a fixed location or spatio-temporal wind fields around that location. More... »
PAGES921-944
http://scigraph.springernature.com/pub.10.1007/s00704-018-2411-y
DOIhttp://dx.doi.org/10.1007/s00704-018-2411-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1101139843
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematical Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden",
"id": "http://www.grid.ac/institutes/grid.5371.0",
"name": [
"Department of Mathematical Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden"
],
"type": "Organization"
},
"familyName": "Rychlik",
"givenName": "Igor",
"id": "sg:person.015546022606.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden",
"id": "http://www.grid.ac/institutes/grid.5371.0",
"name": [
"Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden"
],
"type": "Organization"
},
"familyName": "Mao",
"givenName": "Wengang",
"id": "sg:person.011623526636.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011623526636.51"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10687-010-0119-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000439726",
"https://doi.org/10.1007/s10687-010-0119-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4471-3675-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001789312",
"https://doi.org/10.1007/978-1-4471-3675-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10687-015-0227-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050364861",
"https://doi.org/10.1007/s10687-015-0227-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10687-010-0117-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000929413",
"https://doi.org/10.1007/s10687-010-0117-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-0173-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001840015",
"https://doi.org/10.1007/978-1-4612-0173-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-02-20",
"datePublishedReg": "2018-02-20",
"description": "The wind speed variability in the North Atlantic has been successfully modelled using a spatio-temporal transformed Gaussian field. However, this type of model does not correctly describe the extreme wind speeds attributed to tropical storms and hurricanes. In this study, the transformed Gaussian model is further developed to include the occurrence of severe storms. In this new model, random components are added to the transformed Gaussian field to model rare events with extreme wind speeds. The resulting random field is locally stationary and homogeneous. The localized dependence structure is described by time- and space-dependent parameters. The parameters have a natural physical interpretation. To exemplify its application, the model is fitted to the ECMWF ERA-Interim reanalysis data set. The model is applied to compute long-term wind speed distributions and return values, e.g., 100- or 1000-year extreme wind speeds, and to simulate random wind speed time series at a fixed location or spatio-temporal wind fields around that location.",
"genre": "article",
"id": "sg:pub.10.1007/s00704-018-2411-y",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.7111462",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1086664",
"issn": [
"0177-798X",
"1434-4483"
],
"name": "Theoretical and Applied Climatology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "135"
}
],
"keywords": [
"extreme wind speeds",
"wind speed",
"ECMWF ERA-Interim reanalysis data",
"ERA-Interim reanalysis data",
"wind speed variability",
"Gulf of Mexico",
"reanalysis data",
"North Atlantic",
"tropical storms",
"long-term wind speed distributions",
"severe storms",
"wind field",
"spatio-temporal modelling",
"speed variability",
"time series",
"wind speed distribution",
"storms",
"wind speed variations",
"Atlantic",
"types of models",
"speed distribution",
"Gulf",
"hurricanes",
"extremes",
"variability",
"speed variation",
"location",
"wind speed time series",
"random component",
"Mexico",
"Caribbean",
"dependence structure",
"events",
"speed time series",
"modelling",
"occurrence",
"model",
"variation",
"new model",
"physical interpretation",
"interpretation",
"field",
"space-dependent parameters",
"Gaussian model",
"speed",
"distribution",
"rare event",
"data",
"series",
"parameters",
"natural physical interpretation",
"components",
"values",
"Gaussian field",
"time",
"types",
"structure",
"study",
"random fields",
"applications"
],
"name": "Spatio-temporal modelling of wind speed variations and extremes in the Caribbean and the Gulf of Mexico",
"pagination": "921-944",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1101139843"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00704-018-2411-y"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00704-018-2411-y",
"https://app.dimensions.ai/details/publication/pub.1101139843"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:19",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_789.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00704-018-2411-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2411-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2411-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2411-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00704-018-2411-y'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
22 PREDICATES
90 URIs
77 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00704-018-2411-y | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | schema:author | N015593fc155c482585aed29e8b85b1b0 |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-4471-3675-0 |
5 | ″ | ″ | sg:pub.10.1007/978-1-4612-0173-1 |
6 | ″ | ″ | sg:pub.10.1007/s10687-010-0117-3 |
7 | ″ | ″ | sg:pub.10.1007/s10687-010-0119-1 |
8 | ″ | ″ | sg:pub.10.1007/s10687-015-0227-z |
9 | ″ | schema:datePublished | 2018-02-20 |
10 | ″ | schema:datePublishedReg | 2018-02-20 |
11 | ″ | schema:description | The wind speed variability in the North Atlantic has been successfully modelled using a spatio-temporal transformed Gaussian field. However, this type of model does not correctly describe the extreme wind speeds attributed to tropical storms and hurricanes. In this study, the transformed Gaussian model is further developed to include the occurrence of severe storms. In this new model, random components are added to the transformed Gaussian field to model rare events with extreme wind speeds. The resulting random field is locally stationary and homogeneous. The localized dependence structure is described by time- and space-dependent parameters. The parameters have a natural physical interpretation. To exemplify its application, the model is fitted to the ECMWF ERA-Interim reanalysis data set. The model is applied to compute long-term wind speed distributions and return values, e.g., 100- or 1000-year extreme wind speeds, and to simulate random wind speed time series at a fixed location or spatio-temporal wind fields around that location. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | true |
15 | ″ | schema:isPartOf | N235c2bf4b3b54bf49036b6eb11cbedb2 |
16 | ″ | ″ | Nc6b10b65506f4476b02f54134cce614f |
17 | ″ | ″ | sg:journal.1086664 |
18 | ″ | schema:keywords | Atlantic |
19 | ″ | ″ | Caribbean |
20 | ″ | ″ | ECMWF ERA-Interim reanalysis data |
21 | ″ | ″ | ERA-Interim reanalysis data |
22 | ″ | ″ | Gaussian field |
23 | ″ | ″ | Gaussian model |
24 | ″ | ″ | Gulf |
25 | ″ | ″ | Gulf of Mexico |
26 | ″ | ″ | Mexico |
27 | ″ | ″ | North Atlantic |
28 | ″ | ″ | applications |
29 | ″ | ″ | components |
30 | ″ | ″ | data |
31 | ″ | ″ | dependence structure |
32 | ″ | ″ | distribution |
33 | ″ | ″ | events |
34 | ″ | ″ | extreme wind speeds |
35 | ″ | ″ | extremes |
36 | ″ | ″ | field |
37 | ″ | ″ | hurricanes |
38 | ″ | ″ | interpretation |
39 | ″ | ″ | location |
40 | ″ | ″ | long-term wind speed distributions |
41 | ″ | ″ | model |
42 | ″ | ″ | modelling |
43 | ″ | ″ | natural physical interpretation |
44 | ″ | ″ | new model |
45 | ″ | ″ | occurrence |
46 | ″ | ″ | parameters |
47 | ″ | ″ | physical interpretation |
48 | ″ | ″ | random component |
49 | ″ | ″ | random fields |
50 | ″ | ″ | rare event |
51 | ″ | ″ | reanalysis data |
52 | ″ | ″ | series |
53 | ″ | ″ | severe storms |
54 | ″ | ″ | space-dependent parameters |
55 | ″ | ″ | spatio-temporal modelling |
56 | ″ | ″ | speed |
57 | ″ | ″ | speed distribution |
58 | ″ | ″ | speed time series |
59 | ″ | ″ | speed variability |
60 | ″ | ″ | speed variation |
61 | ″ | ″ | storms |
62 | ″ | ″ | structure |
63 | ″ | ″ | study |
64 | ″ | ″ | time |
65 | ″ | ″ | time series |
66 | ″ | ″ | tropical storms |
67 | ″ | ″ | types |
68 | ″ | ″ | types of models |
69 | ″ | ″ | values |
70 | ″ | ″ | variability |
71 | ″ | ″ | variation |
72 | ″ | ″ | wind field |
73 | ″ | ″ | wind speed |
74 | ″ | ″ | wind speed distribution |
75 | ″ | ″ | wind speed time series |
76 | ″ | ″ | wind speed variability |
77 | ″ | ″ | wind speed variations |
78 | ″ | schema:name | Spatio-temporal modelling of wind speed variations and extremes in the Caribbean and the Gulf of Mexico |
79 | ″ | schema:pagination | 921-944 |
80 | ″ | schema:productId | N56a065897a23474f83bc6375246c5951 |
81 | ″ | ″ | N7dcab87a69b84cf38f7c551f952198cb |
82 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1101139843 |
83 | ″ | ″ | https://doi.org/10.1007/s00704-018-2411-y |
84 | ″ | schema:sdDatePublished | 2022-06-01T22:19 |
85 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
86 | ″ | schema:sdPublisher | N8b68f4ede75345e5ba5f4a824e35194b |
87 | ″ | schema:url | https://doi.org/10.1007/s00704-018-2411-y |
88 | ″ | sgo:license | sg:explorer/license/ |
89 | ″ | sgo:sdDataset | articles |
90 | ″ | rdf:type | schema:ScholarlyArticle |
91 | N015593fc155c482585aed29e8b85b1b0 | rdf:first | sg:person.015546022606.95 |
92 | ″ | rdf:rest | N43a2ce4fca2f4b09838ca1eab02a48a1 |
93 | N235c2bf4b3b54bf49036b6eb11cbedb2 | schema:volumeNumber | 135 |
94 | ″ | rdf:type | schema:PublicationVolume |
95 | N43a2ce4fca2f4b09838ca1eab02a48a1 | rdf:first | sg:person.011623526636.51 |
96 | ″ | rdf:rest | rdf:nil |
97 | N56a065897a23474f83bc6375246c5951 | schema:name | doi |
98 | ″ | schema:value | 10.1007/s00704-018-2411-y |
99 | ″ | rdf:type | schema:PropertyValue |
100 | N7dcab87a69b84cf38f7c551f952198cb | schema:name | dimensions_id |
101 | ″ | schema:value | pub.1101139843 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | N8b68f4ede75345e5ba5f4a824e35194b | schema:name | Springer Nature - SN SciGraph project |
104 | ″ | rdf:type | schema:Organization |
105 | Nc6b10b65506f4476b02f54134cce614f | schema:issueNumber | 3-4 |
106 | ″ | rdf:type | schema:PublicationIssue |
107 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Earth Sciences |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Atmospheric Sciences |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | sg:grant.7111462 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00704-018-2411-y |
114 | ″ | rdf:type | schema:MonetaryGrant |
115 | sg:journal.1086664 | schema:issn | 0177-798X |
116 | ″ | ″ | 1434-4483 |
117 | ″ | schema:name | Theoretical and Applied Climatology |
118 | ″ | schema:publisher | Springer Nature |
119 | ″ | rdf:type | schema:Periodical |
120 | sg:person.011623526636.51 | schema:affiliation | grid-institutes:grid.5371.0 |
121 | ″ | schema:familyName | Mao |
122 | ″ | schema:givenName | Wengang |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011623526636.51 |
124 | ″ | rdf:type | schema:Person |
125 | sg:person.015546022606.95 | schema:affiliation | grid-institutes:grid.5371.0 |
126 | ″ | schema:familyName | Rychlik |
127 | ″ | schema:givenName | Igor |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95 |
129 | ″ | rdf:type | schema:Person |
130 | sg:pub.10.1007/978-1-4471-3675-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001789312 |
131 | ″ | ″ | https://doi.org/10.1007/978-1-4471-3675-0 |
132 | ″ | rdf:type | schema:CreativeWork |
133 | sg:pub.10.1007/978-1-4612-0173-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001840015 |
134 | ″ | ″ | https://doi.org/10.1007/978-1-4612-0173-1 |
135 | ″ | rdf:type | schema:CreativeWork |
136 | sg:pub.10.1007/s10687-010-0117-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000929413 |
137 | ″ | ″ | https://doi.org/10.1007/s10687-010-0117-3 |
138 | ″ | rdf:type | schema:CreativeWork |
139 | sg:pub.10.1007/s10687-010-0119-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000439726 |
140 | ″ | ″ | https://doi.org/10.1007/s10687-010-0119-1 |
141 | ″ | rdf:type | schema:CreativeWork |
142 | sg:pub.10.1007/s10687-015-0227-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050364861 |
143 | ″ | ″ | https://doi.org/10.1007/s10687-015-0227-z |
144 | ″ | rdf:type | schema:CreativeWork |
145 | grid-institutes:grid.5371.0 | schema:alternateName | Department of Mathematical Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden |
146 | ″ | ″ | Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden |
147 | ″ | schema:name | Department of Mathematical Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden |
148 | ″ | ″ | Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden |
149 | ″ | rdf:type | schema:Organization |