Relationships between teleconnection patterns and Turkish climatic extremes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12-18

AUTHORS

H. Baltacı, B. O. Akkoyunlu, M. Tayanç

ABSTRACT

This is a study on the effects of teleconnection patterns (TPs) on the extremes of temperature and precipitation over Turkey. Relationships between five teleconnection patterns, North Atlantic Oscillation (NAO), Arctic Oscillation (AO), East Atlantic-Western Russia (EAWR), East Atlantic (EA), and Scandinavian (SCA) patterns, and 11 climate extreme indices were studied by using 94 uniformly distributed meteorological stations over Turkey for the period of 1965–2014. Analyzing strong positive and negative temperature deviations from the 50-year-winter means shows that such extremes can often be explained by using AO and EAWR patterns. During the negative AO, generally more warm days occur over Black Sea (r = −0.6) and Aegean regions (r = −0.7). This phase of AO also generates above-normal precipitation in the western parts of the Anatolian Peninsula (r around − 0.5). Winter-time negative AO is mainly associated with the presence of a deepened Genoa cyclone over Italy that can transport warm and moist air mass from Mediterranean Sea towards Turkey by strong westerly winds. In contrast, positive EAWR is mainly connected to cold nights over Black Sea (r = 0.6) and Aegean regions (r = 0.6) together with positive precipitation anomalies at the seaside stations of the eastern Black Sea region. On the other hand, when positive EAWR prevails, Azores high-pressure center expands towards continental Europe bringing cold air by strong northerly winds together with higher moisture transport from the Black Sea. These results could pave the way for new possibilities regarding the projection of extremes in downscaling techniques. More... »

PAGES

1365-1386

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00704-017-2350-z

DOI

http://dx.doi.org/10.1007/s00704-017-2350-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099713254


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Turkish State Meteorological Service, K\u00fct\u00fck\u00e7\u00fc Alibey Caddesi No. 4, 06120, Ankara, Turkey", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Turkish State Meteorological Service, K\u00fct\u00fck\u00e7\u00fc Alibey Caddesi No. 4, 06120, Ankara, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baltac\u0131", 
        "givenName": "H.", 
        "id": "sg:person.014261602221.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014261602221.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Marmara University, Istanbul, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.16477.33", 
          "name": [
            "Department of Physics, Marmara University, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akkoyunlu", 
        "givenName": "B. O.", 
        "id": "sg:person.0636136605.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636136605.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Engineering, Marmara University, Istanbul, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.16477.33", 
          "name": [
            "Department of Environmental Engineering, Marmara University, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tayan\u00e7", 
        "givenName": "M.", 
        "id": "sg:person.013062736261.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013062736261.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10584-009-9721-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031381674", 
          "https://doi.org/10.1007/s10584-009-9721-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-002-0674-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032469238", 
          "https://doi.org/10.1007/s00704-002-0674-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-004-0084-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033054711", 
          "https://doi.org/10.1007/s00704-004-0084-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-013-1036-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014290113", 
          "https://doi.org/10.1007/s00704-013-1036-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-008-9511-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013178895", 
          "https://doi.org/10.1007/s10584-008-9511-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s704-002-8205-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053562478", 
          "https://doi.org/10.1007/s704-002-8205-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006979406", 
          "https://doi.org/10.1038/nature02300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00703-005-0122-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034876563", 
          "https://doi.org/10.1007/s00703-005-0122-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-015-1653-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007150721", 
          "https://doi.org/10.1007/s00704-015-1653-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s007040200021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019784088", 
          "https://doi.org/10.1007/s007040200021"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12-18", 
    "datePublishedReg": "2017-12-18", 
    "description": "This is a study on the effects of teleconnection patterns (TPs) on the extremes of temperature and precipitation over Turkey. Relationships between five teleconnection patterns, North Atlantic Oscillation (NAO), Arctic Oscillation (AO), East Atlantic-Western Russia (EAWR), East Atlantic (EA), and Scandinavian (SCA) patterns, and 11 climate extreme indices were studied by using 94 uniformly distributed meteorological stations over Turkey for the period of 1965\u20132014. Analyzing strong positive and negative temperature deviations from the 50-year-winter means shows that such extremes can often be explained by using AO and EAWR patterns. During the negative AO, generally more warm days occur over Black Sea (r\u2009=\u2009\u22120.6) and Aegean regions (r\u2009=\u2009\u22120.7). This phase of AO also generates above-normal precipitation in the western parts of the Anatolian Peninsula (r around \u2212\u20090.5). Winter-time negative AO is mainly associated with the presence of a deepened Genoa cyclone over Italy that can transport warm and moist air mass from Mediterranean Sea towards Turkey by strong westerly winds. In contrast, positive EAWR is mainly connected to cold nights over Black Sea (r\u2009=\u20090.6) and Aegean regions (r\u2009=\u20090.6) together with positive precipitation anomalies at the seaside stations of the eastern Black Sea region. On the other hand, when positive EAWR prevails, Azores high-pressure center expands towards continental Europe bringing cold air by strong northerly winds together with higher moisture transport from the Black Sea. These results could pave the way for new possibilities regarding the projection of extremes in downscaling techniques.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00704-017-2350-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1086664", 
        "issn": [
          "0177-798X", 
          "1434-4483"
        ], 
        "name": "Theoretical and Applied Climatology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "134"
      }
    ], 
    "keywords": [
      "East Atlantic-Western Russia", 
      "North Atlantic Oscillation", 
      "Arctic Oscillation", 
      "negative Arctic Oscillation", 
      "teleconnection patterns", 
      "Black Sea", 
      "East Atlantic", 
      "Aegean region", 
      "high moisture transport", 
      "projection of extremes", 
      "positive precipitation anomalies", 
      "climate extreme indices", 
      "moist air masses", 
      "negative temperature deviations", 
      "strong westerly winds", 
      "high pressure center", 
      "Eastern Black Sea Region", 
      "EAWR pattern", 
      "Atlantic Oscillation", 
      "extreme indices", 
      "precipitation anomalies", 
      "Scandinavian pattern", 
      "westerly winds", 
      "air masses", 
      "moisture transport", 
      "Genoa cyclone", 
      "meteorological stations", 
      "normal precipitation", 
      "western part", 
      "such extremes", 
      "climatic extremes", 
      "Sea region", 
      "Mediterranean Sea", 
      "Black Sea region", 
      "Anatolian peninsula", 
      "cold nights", 
      "warm days", 
      "cold air", 
      "Sea", 
      "extremes", 
      "precipitation", 
      "extremes of temperature", 
      "wind", 
      "continental Europe", 
      "stations", 
      "temperature deviation", 
      "oscillations", 
      "Atlantic", 
      "cyclones", 
      "region", 
      "Peninsula", 
      "anomalies", 
      "Turkey", 
      "patterns", 
      "transport", 
      "projections", 
      "prevails", 
      "Italy", 
      "Europe", 
      "Russia", 
      "period", 
      "air", 
      "part", 
      "temperature", 
      "night", 
      "relationship", 
      "mass", 
      "phase", 
      "contrast", 
      "index", 
      "center", 
      "deviation", 
      "presence", 
      "results", 
      "study", 
      "means", 
      "days", 
      "hand", 
      "possibility", 
      "technique", 
      "new possibilities", 
      "effect", 
      "way"
    ], 
    "name": "Relationships between teleconnection patterns and Turkish climatic extremes", 
    "pagination": "1365-1386", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099713254"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00704-017-2350-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00704-017-2350-z", 
      "https://app.dimensions.ai/details/publication/pub.1099713254"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_736.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00704-017-2350-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00704-017-2350-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00704-017-2350-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00704-017-2350-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00704-017-2350-z'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      117 URIs      99 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00704-017-2350-z schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N741cb0cc4345430baf0d862b3435fd29
4 schema:citation sg:pub.10.1007/s00703-005-0122-2
5 sg:pub.10.1007/s00704-002-0674-8
6 sg:pub.10.1007/s00704-004-0084-1
7 sg:pub.10.1007/s00704-013-1036-4
8 sg:pub.10.1007/s00704-015-1653-1
9 sg:pub.10.1007/s007040200021
10 sg:pub.10.1007/s10584-008-9511-0
11 sg:pub.10.1007/s10584-009-9721-0
12 sg:pub.10.1007/s704-002-8205-x
13 sg:pub.10.1038/nature02300
14 schema:datePublished 2017-12-18
15 schema:datePublishedReg 2017-12-18
16 schema:description This is a study on the effects of teleconnection patterns (TPs) on the extremes of temperature and precipitation over Turkey. Relationships between five teleconnection patterns, North Atlantic Oscillation (NAO), Arctic Oscillation (AO), East Atlantic-Western Russia (EAWR), East Atlantic (EA), and Scandinavian (SCA) patterns, and 11 climate extreme indices were studied by using 94 uniformly distributed meteorological stations over Turkey for the period of 1965–2014. Analyzing strong positive and negative temperature deviations from the 50-year-winter means shows that such extremes can often be explained by using AO and EAWR patterns. During the negative AO, generally more warm days occur over Black Sea (r = −0.6) and Aegean regions (r = −0.7). This phase of AO also generates above-normal precipitation in the western parts of the Anatolian Peninsula (r around − 0.5). Winter-time negative AO is mainly associated with the presence of a deepened Genoa cyclone over Italy that can transport warm and moist air mass from Mediterranean Sea towards Turkey by strong westerly winds. In contrast, positive EAWR is mainly connected to cold nights over Black Sea (r = 0.6) and Aegean regions (r = 0.6) together with positive precipitation anomalies at the seaside stations of the eastern Black Sea region. On the other hand, when positive EAWR prevails, Azores high-pressure center expands towards continental Europe bringing cold air by strong northerly winds together with higher moisture transport from the Black Sea. These results could pave the way for new possibilities regarding the projection of extremes in downscaling techniques.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf Ndaba6be5d001458b8601b90cc59e1ed4
20 Ne810aaf1b1f74e08ab64a45d068d05e3
21 sg:journal.1086664
22 schema:keywords Aegean region
23 Anatolian peninsula
24 Arctic Oscillation
25 Atlantic
26 Atlantic Oscillation
27 Black Sea
28 Black Sea region
29 EAWR pattern
30 East Atlantic
31 East Atlantic-Western Russia
32 Eastern Black Sea Region
33 Europe
34 Genoa cyclone
35 Italy
36 Mediterranean Sea
37 North Atlantic Oscillation
38 Peninsula
39 Russia
40 Scandinavian pattern
41 Sea
42 Sea region
43 Turkey
44 air
45 air masses
46 anomalies
47 center
48 climate extreme indices
49 climatic extremes
50 cold air
51 cold nights
52 continental Europe
53 contrast
54 cyclones
55 days
56 deviation
57 effect
58 extreme indices
59 extremes
60 extremes of temperature
61 hand
62 high moisture transport
63 high pressure center
64 index
65 mass
66 means
67 meteorological stations
68 moist air masses
69 moisture transport
70 negative Arctic Oscillation
71 negative temperature deviations
72 new possibilities
73 night
74 normal precipitation
75 oscillations
76 part
77 patterns
78 period
79 phase
80 positive precipitation anomalies
81 possibility
82 precipitation
83 precipitation anomalies
84 presence
85 prevails
86 projection of extremes
87 projections
88 region
89 relationship
90 results
91 stations
92 strong westerly winds
93 study
94 such extremes
95 technique
96 teleconnection patterns
97 temperature
98 temperature deviation
99 transport
100 warm days
101 way
102 westerly winds
103 western part
104 wind
105 schema:name Relationships between teleconnection patterns and Turkish climatic extremes
106 schema:pagination 1365-1386
107 schema:productId N5bbc50cfa7a045c992e9d7b4e2932c4c
108 Na4963f64bcd7477ba9c7809790224e6d
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099713254
110 https://doi.org/10.1007/s00704-017-2350-z
111 schema:sdDatePublished 2022-09-02T16:00
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher N228a8ddd047546fa9dc02021b1c2e703
114 schema:url https://doi.org/10.1007/s00704-017-2350-z
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N1ac823d072f64e3f8cf1c73d19d7a4f3 rdf:first sg:person.0636136605.88
119 rdf:rest Nd4ab10aac35142329b47d9c51dc4045a
120 N228a8ddd047546fa9dc02021b1c2e703 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 N5bbc50cfa7a045c992e9d7b4e2932c4c schema:name doi
123 schema:value 10.1007/s00704-017-2350-z
124 rdf:type schema:PropertyValue
125 N741cb0cc4345430baf0d862b3435fd29 rdf:first sg:person.014261602221.18
126 rdf:rest N1ac823d072f64e3f8cf1c73d19d7a4f3
127 Na4963f64bcd7477ba9c7809790224e6d schema:name dimensions_id
128 schema:value pub.1099713254
129 rdf:type schema:PropertyValue
130 Nd4ab10aac35142329b47d9c51dc4045a rdf:first sg:person.013062736261.42
131 rdf:rest rdf:nil
132 Ndaba6be5d001458b8601b90cc59e1ed4 schema:volumeNumber 134
133 rdf:type schema:PublicationVolume
134 Ne810aaf1b1f74e08ab64a45d068d05e3 schema:issueNumber 3-4
135 rdf:type schema:PublicationIssue
136 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
137 schema:name Earth Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
140 schema:name Atmospheric Sciences
141 rdf:type schema:DefinedTerm
142 sg:journal.1086664 schema:issn 0177-798X
143 1434-4483
144 schema:name Theoretical and Applied Climatology
145 schema:publisher Springer Nature
146 rdf:type schema:Periodical
147 sg:person.013062736261.42 schema:affiliation grid-institutes:grid.16477.33
148 schema:familyName Tayanç
149 schema:givenName M.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013062736261.42
151 rdf:type schema:Person
152 sg:person.014261602221.18 schema:affiliation grid-institutes:None
153 schema:familyName Baltacı
154 schema:givenName H.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014261602221.18
156 rdf:type schema:Person
157 sg:person.0636136605.88 schema:affiliation grid-institutes:grid.16477.33
158 schema:familyName Akkoyunlu
159 schema:givenName B. O.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636136605.88
161 rdf:type schema:Person
162 sg:pub.10.1007/s00703-005-0122-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034876563
163 https://doi.org/10.1007/s00703-005-0122-2
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00704-002-0674-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032469238
166 https://doi.org/10.1007/s00704-002-0674-8
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00704-004-0084-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033054711
169 https://doi.org/10.1007/s00704-004-0084-1
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00704-013-1036-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014290113
172 https://doi.org/10.1007/s00704-013-1036-4
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00704-015-1653-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007150721
175 https://doi.org/10.1007/s00704-015-1653-1
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s007040200021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019784088
178 https://doi.org/10.1007/s007040200021
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s10584-008-9511-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013178895
181 https://doi.org/10.1007/s10584-008-9511-0
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s10584-009-9721-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031381674
184 https://doi.org/10.1007/s10584-009-9721-0
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s704-002-8205-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053562478
187 https://doi.org/10.1007/s704-002-8205-x
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nature02300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006979406
190 https://doi.org/10.1038/nature02300
191 rdf:type schema:CreativeWork
192 grid-institutes:None schema:alternateName Turkish State Meteorological Service, Kütükçü Alibey Caddesi No. 4, 06120, Ankara, Turkey
193 schema:name Turkish State Meteorological Service, Kütükçü Alibey Caddesi No. 4, 06120, Ankara, Turkey
194 rdf:type schema:Organization
195 grid-institutes:grid.16477.33 schema:alternateName Department of Environmental Engineering, Marmara University, Istanbul, Turkey
196 Department of Physics, Marmara University, Istanbul, Turkey
197 schema:name Department of Environmental Engineering, Marmara University, Istanbul, Turkey
198 Department of Physics, Marmara University, Istanbul, Turkey
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...